Ballfields Parcels at DoDHF Novato, CA Data Validation Reports LDC# 13575

Volatiles

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Ballfields Parcels at DoDHF Novato, CA

Collection Date: April 6, 2005

LDC Report Date: June 15, 2005

Matrix: Soil

Parameters: Volatiles

Validation Level: NFESC Level III

Laboratory: Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): K2502497

Sample Identification

TO63-R2-SB04-0-0.5 TO63-R1-SB01-0-0.5MS TO63-R2-SB04-3-4 TO63-R1-SB01-0-0.5MSD

TO63-R2-SB01-0-0.5

TO63-R2-SB01-0-0.5 Dup

TO63-R2-SB01-1-2

TO63-R1-SB04-0-0.5

TO63-R1-SB04-4-5

TO63-R1-SB01-0-0.5

TO63-R1-SB03-0-0.5

TO63-R1-SB03-4-5

TO63-R4-SB04-0-0.5

TO63-R4-SB04-4-5

TO63-R5-SB04-0-0.5

TO63-R5-SB04-5-6

TO63-R5-SB02-0-0.5

TO63-R5-SB02-3-4

TO63-R5-SB01-0-0.5

TO63-R5-SB03-0-0.5

TO63-R2-SB03-0-0.5

TO63-R2-SB02-0-0.5

Introduction

This data review covers 22 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

The review follows the Final Sampling and Analysis Plan for Preliminary Assessment/Site Investigation of Ballfields Parcels at DoDHF Novato, California, (March 23, 2005) and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs) with the following exceptions:

Date	Compound	%RSD	Associated Samples	Flag	A or P
4/11/05	Bromomethane Cyclohexane Methylcyclohexane	15.7 15.8 15.5	All samples in SDG K2502497	J (all detects) UJ (all non-detects)	A

Average relative response factors (RRF) for all volatile target compounds and system performance check compounds (SPCCs) were greater than or equal to 0.05 as required.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs) with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
4/13/05	Dichlorodifluoromethane	22	TO63-R1-SB01-0-0.5MS TO63-R1-SB01-0-0.5MSD	J (all detects) UJ (all non-detects)	А

The percent difference (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

All of the continuing calibration RRF values for all system performance check compounds (SPCCs) were within method criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Analysis Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
KWG0505901-3	4/11/05	Acetone Bromomethane	10 ug/Kg 0.80 ug/Kg	TO63-R2-SB04-0-0.5 TO63-R2-SB04-3-4 TO63-R2-SB01-0-0.5 TO63-R2-SB01-0-0.5 Dup TO63-R2-SB01-1-2 TO63-R1-SB04-0-0.5 TO63-R1-SB04-0-0.5
KWG0506003-3	4/12/05	Bromomethane	1.1 ug/Kg	TO63-R1-SB03-0-0.5 TO63-R1-SB03-4-5 TO63-R4-SB04-0-0.5 TO63-R5-SB04-0-0.5 TO63-R5-SB04-5-6 TO63-R5-SB02-0-0.5 TO63-R5-SB02-3-4 TO63-R5-SB01-0-0.5 TO63-R5-SB03-0-0.5 TO63-R2-SB03-0-0.5 TO63-R2-SB03-0-0.5

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound	Reported	Modified Final
	TIC (RT in minutes)	Concentration	Concentration
TO63-R2-SB04-3-4	Acetone	63 ug/Kg	63U ug/Kg

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples T063-R2-SB01-0-0.5 and T063-R2-SB01-0-0.5 Dup and samples T063-R1-SB01-0-0.5 and T063-R1-SB01-0-0.5Dup (from SDG K2502497) were identified as field duplicates. No volatiles were detected in any of these samples.

XVII. Field Blanks

No field blanks were identified in this SDG.

Ballfields Parcels at DoDHF Novato, CA Volatiles - Data Qualification Summary - SDG K2502497

SDG	Sample	Compound	Flag	A or P	Reason
K2502497	TO63-R2-SB04-0-0.5 TO63-R2-SB04-0-0.5 TO63-R2-SB01-0-0.5 TO63-R2-SB01-0-0.5 TO63-R1-SB04-0-0.5 TO63-R1-SB04-0-0.5 TO63-R1-SB03-0-0.5 TO63-R1-SB03-0-0.5 TO63-R1-SB03-4-5 TO63-R4-SB04-0-0.5 TO63-R4-SB04-0-0.5 TO63-R5-SB04-5-6 TO63-R5-SB04-5-6 TO63-R5-SB04-5-6 TO63-R5-SB02-0-0.5 TO63-R5-SB01-0-0.5 TO63-R5-SB01-0-0.5 TO63-R5-SB03-0-0.5 TO63-R5-SB03-0-0.5 TO63-R5-SB03-0-0.5	Bromomethane Cyclohexane Methylcyclohexane	J (all detects) UJ (all non-detects)	А	Initial calibration (%RSD)

Ballfields Parcels at DoDHF Novato, CA Volatiles - Laboratory Blank Data Qualification Summary - SDG K2502497

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P
K2502497	TO63-R2-SB04-3-4	Acetone	63U ug/Kg	А

Analytical Results

Client:

Battelle Memorial Institute

Project:

Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Date

Volatile Organic Compounds

Dibution

Date

Sample Name:

TO63-R2-SB04-0-0.5

Lab Code:

K2502497-001

Extraction Method:

EPA 5035

Analysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

Extraction

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND U	6.3	0.88	1	04/11/05	04/12/05	KWG0505901	
Chloromethane	ND U	6.3	1.3	1	04/11/05	04/12/05	KWG0505901	
Vinyl Chloride	ND U	6.3	0.78	1	04/11/05	04/12/05	KWG0505901	
Bromomethane	ND U UJ	6.3	1.1	1	04/11/05	04/12/05	KWG0505901	
Chloroethane	ND U	6.3	0.98	1	04/11/05	04/12/05	KWG0505901	
Trichlorofluoromethane	ND U	6.3	0.92	1	04/11/05	04/12/05	KWG0505901	
Trichlorotrifluoroethane	ND U	6.3	0.93	1	04/11/05	04/12/05	KWG0505901	
Acetone	ND U	26	13	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethene	ND U	6.3	0.90	1	04/11/05	04/12/05	KWG0505901	
Methyl Acetate	ND U	6.3	0.93	1	04/11/05	04/12/05	KWG0505901	
Carbon Disulfide	ND U	6.3	1.9	1	04/11/05	04/12/05	KWG0505901	
Diisopropyl Ether	ND U	13	0.43	1	04/11/05	04/12/05	KWG0505901	
Methylene Chloride	ND U	13	3.2	1	04/11/05	04/12/05	KWG0505901	
Methyl tert-Butyl Ether	ND U	6.3	0.82	1	04/11/05	04/12/05	KWG0505901	
trans-1,2-Dichloroethene	ND U	6.3	0.92	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethane	ND U	6.3	0.98	1	04/11/05	04/12/05	KWG0505901	
2-Butanone (MEK)	ND U	26	16	1	04/11/05	04/12/05	KWG0505901	
cis-1,2-Dichloroethene	ND U	6.3	1.1	1	04/11/05	04/12/05	KWG0505901	
Chloroform	ND U	6.3	0.72	1	04/11/05	04/12/05	KWG0505901	
1,1,1-Trichloroethane (TCA)	ND U	6.3	0.72	1	04/11/05	04/12/05	KWG0505901	
Cyclohexane	ND U UJ	6.3	0.85	1	04/11/05	04/12/05	KWG0505901	
Carbon Tetrachloride	ND U	6.3	0.76	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloroethane (EDC)	ND U	6.3	0.85	1	04/11/05	04/12/05	KWG0505901	
Benzene	ND U	6.3	1.0	1	04/11/05	04/12/05	KWG0505901	
Trichloroethene (TCE)	ND U	6.3	0.36	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloropropane	ND U	6.3	0.91	1	04/11/05	04/12/05	KWG0505901	
Bromodichloromethane	ND U	6.3	0.67	1	04/11/05	04/12/05	KWG0505901	
Methylcyclohexane	ND U UJ	6.3	0.90	1	04/11/05	04/12/05	KWG0505901	
2-Hexanone	ND U	26	7.7	1	04/11/05	04/12/05	KWG0505901	
cis-1,3-Dichloropropene	ND U	6.3	0.96	1	04/11/05	04/12/05	KWG0505901	
Toluene	ND U	6.3	1.1	1	04/11/05	04/12/05	KWG0505901	
trans-1,3-Dichloropropene	ND U	6.3	0.76	1	04/11/05	04/12/05	KWG0505901	
1,1,2-Trichloroethane	ND U	6.3	0.87	1	04/11/05	04/12/05	KWG0505901	

Comments:

Page

Printed: 04/20/2005 12:26:28 u:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic 944

SuperSet Reference:

RR47238

1 of 2

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R2-SB04-0-0.5

Lab Code:

K2502497-001

Extraction Method: Analysis Method:

EPA 5035 8260B

Units: ug/Kg Basis: Dry

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND	U	26	6.9	1	04/11/05	04/12/05	KWG0505901	
Tetrachloroethene (PCE)	ND	U	6.3	0.39	1	04/11/05	04/12/05	KWG0505901	
Dibromochloromethane	ND	U	6.3	0.76	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromoethane (EDB)	ND	U	26	1.0	1	04/11/05	04/12/05	KWG0505901	
Chlorobenzene	ND	U	6.3	0.88	1	04/11/05	04/12/05	KWG0505901	
Ethylbenzene	ND	U	6.3	0.72	1	04/11/05	04/12/05	KWG0505901	
m,p-Xylenes	ND	U	6.3	1.9	1	04/11/05	04/12/05	KWG0505901	
o-Xylene	ND	U	6.3	0.87	1	04/11/05	04/12/05	KWG0505901	
Styrene	ND	U	6.3	0.92	1	04/11/05	04/12/05	KWG0505901	
Bromoform	ND	U	6.3	0.97	1	04/11/05	04/12/05	KWG0505901	
Isopropylbenzene	ND	U	26	0.86	1	04/11/05	04/12/05	KWG0505901	
1,1,2,2-Tetrachloroethane	ND	U	6.3	0.93	1	04/11/05	04/12/05	KWG0505901	
1,3-Dichlorobenzene	ND	U	6.3	0.90	1	04/11/05	04/12/05	KWG0505901	
1,4-Dichlorobenzene	ND	U	6.3	1.1	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichlorobenzene	ND	U	6.3	0.82	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromo-3-chloropropane	ND	U	26	1.1	1	04/11/05	04/12/05	KWG0505901	
1,2,4-Trichlorobenzene	ND	U	26	0.97	1	04/11/05	04/12/05	KWG0505901	
Naphthalene	ND	U	26	1.2	1	04/11/05	04/12/05	KWG0505901	
Bromochloromethane	ND	U	6.3	1.3	1	04/11/05	04/12/05	KWG0505901	
1,2,3-Trichlorobenzene	ND	U	26	1.2	1	04/11/05	04/12/05	KWG0505901	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	104	70-119	04/12/05	Acceptable	
Toluene-d8	111	72-121	04/12/05	Acceptable	
4-Bromofluorobenzene	110	66-122	04/12/05	Acceptable	

Comments:

Analytical Results

Client:

Battelle Memorial Institute Novato Ballfields/G486063

Project: Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005 Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R2-SB04-3-4

Lab Code:

K2502497-002

Extraction Method: Analysis Mothad

EPA 5035 8260B

Units: ug/Kg Basis: Dry

Level: Low

Extraction

Lot

KWG0505901 KWG0505901

KWG0505901

KWG0505901

Note

Analysis Method: 8200B						
	Decile O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed
Analyte Name	Result Q	WIKL	MIDT	Factor		
Dichlorodifluoromethane	ND U	9.7	1.4	1	04/11/05	04/12/05
Chloromethane	ND U	9.7	2.0	1	04/11/05	04/12/05
Vinyl Chloride	ND U	9.7	1.2	1	04/11/05	04/12/05
Bromomethane	LN U UN	9.7	1.6	1	04/11/05	04/12/05
Chloroethane	ND U	9.7	1.6	1	04/11/05	04/12/05
Trichlorofluoromethane	ND U	9.7	1.5	1	04/11/05	04/12/05
Trichlorotrifluoroethane	ND U	9.7	1.5	1	04/11/05	04/12/05
Acetone	63 U	39	20	1	04/11/05	04/12/05
110000110						0 1 14 5 10 5

KWG0505901 /05 KWG0505901 /05 /05 KWG0505901 /05 KWG0505901 KWG0505901 04/11/05 04/12/05 ND U 9.7 1.4 1 1,1-Dichloroethene KWG0505901 1 04/11/05 04/12/05 9.7 1.5 ND U Methyl Acetate KWG0505901 04/12/05 2.9 1 04/11/05 ND U 9.7 Carbon Disulfide KWG0505901 0.66 04/12/05 1 04/11/05 ND U 20 Diisopropyl Ether 04/12/05 KWG0505901 4.9 1 04/11/05 ND U 20 Methylene Chloride 04/12/05 KWG0505901 04/11/05 ND U 9.7 1.3 1 Methyl tert-Butyl Ether KWG0505901 04/11/05 04/12/05 ND U 9.7 1.5 1 trans-1.2-Dichloroethene KWG0505901 1.6 1 04/11/05 04/12/05 9.7 1,1-Dichloroethane ND U KWG0505901 04/12/05 04/11/05 ND U 39 24 1 2-Butanone (MEK) KWG0505901 04/11/05 04/12/05 9.7 1.6 1 ND U cis-1,2-Dichloroethene KWG0505901 04/11/05 04/12/05 ND U 9.7 1.1 1 Chloroform KWG0505901 04/11/05 04/12/05 1.1 1 ND U 9.7 1,1,1-Trichloroethane (TCA) KWG0505901 04/12/05 ND U 1.3 1 04/11/05 WI 9.7 Cyclohexane KWG0505901 04/12/05 9.7 12 1 04/11/05 ND U Carbon Tetrachloride KWG0505901 04/12/05 1.3 1 04/11/05 ND U 9.7 1.2-Dichloroethane (EDC) KWG0505901 04/12/05 04/11/05 ND U 9.7 1.6 1 Benzene 04/12/05 KWG0505901 04/11/05 0.54 1 ND U 9.7 Trichloroethene (TCE) KWG0505901 04/11/05 04/12/05 1.4 1 9.7 1,2-Dichloropropane ND U KWG0505901 04/11/05 04/12/05 1 Bromodichloromethane ND U 9.7 1.1 04/12/05 KWG0505901 1 04/11/05 9.7 1.4 ND U WJ Methylcyclohexane KWG0505901 04/11/05 04/12/05 39 12 1 ND U 2-Hexanone 04/12/05 KWG0505901 04/11/05 1.5 1 9.7 cis-1,3-Dichloropropene ND U KWG0505901 9.7 1.7 1 04/11/05 04/12/05 ND U Toluene KWG0505901 1.2 1 04/11/05 04/12/05 9.7 trans-1,3-Dichloropropene ND U

Comments:

1.4

1000

Printed: 04/20/2005 12:26:30 u:\Stealth\Crystal.rpt\Form1m.rpt

1,1,2-Trichloroethane

Form 1A - Organic

9.7

ND U

Merged

SuperSet Reference:

04/12/05

04/11/05

1 of 2 Page

KWG0505901

946

Analytical Results

Client: Battelle Memorial Institute
Project: Novato Ballfields/G486063

Sample Matrix: Soil

Service Request: K2502497 **Date Collected:** 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

 Sample Name:
 TO63-R2-SB04-3-4

 Lab Code:
 K2502497-002

Extraction Method: EPA 5035 **Analysis Method:** 8260B

Units: ug/Kg
Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND U	39	11	1	04/11/05	04/12/05	KWG0505901	
Tetrachloroethene (PCE)	ND U	9.7	0.60	1	04/11/05	04/12/05	KWG0505901	
Dibromochloromethane	ND U	9.7	1.2	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromoethane (EDB)	ND U	39	1.6	1	04/11/05	04/12/05	KWG0505901	
Chlorobenzene	ND U	9.7	1.4	1	04/11/05	04/12/05	KWG0505901	
Ethylbenzene	ND U	9.7	1.1	1	04/11/05	04/12/05	KWG0505901	
m,p-Xylenes	ND U	9.7	2.9	1	04/11/05	04/12/05	KWG0505901	
o-Xylene	ND U	9.7	1.4	1	04/11/05	04/12/05	KWG0505901	
Styrene	ND U	9.7	1.5	1	04/11/05	04/12/05	KWG0505901	
Bromoform	ND U	9.7	1.5	1	04/11/05	04/12/05	KWG0505901	
Isopropylbenzene	ND U	39	1.4	1	04/11/05	04/12/05	KWG0505901	
1,1,2,2-Tetrachloroethane	ND U	9.7	1.5	1	04/11/05	04/12/05	KWG0505901	
1,3-Dichlorobenzene	ND U	9.7	1.4	1	04/11/05	04/12/05	KWG0505901	
1,4-Dichlorobenzene	ND U	9.7	1.6	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichlorobenzene	ND U	9.7	1.3	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromo-3-chloropropane	ND U	39	1.7	1	04/11/05	04/12/05	KWG0505901	
1,2,4-Trichlorobenzene	ND U	39	1.5	1	04/11/05	04/12/05	KWG0505901	
Naphthalene	ND U	39	1.8	1	04/11/05	04/12/05	KWG0505901	
Bromochloromethane	ND U	9.7	1.9	1	04/11/05	04/12/05	KWG0505901	
1,2,3-Trichlorobenzene	ND U	39	1.8	1	04/11/05	04/12/05	KWG0505901	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	107	70-119	04/12/05	Acceptable
Toluene-d8	108	72-121	04/12/05	Acceptable
4-Bromofluorobenzene	105	66-122	04/12/05	Acceptable

Comments:

Page 2 of 2 RR47238

SuperSet Reference:

Printed: 04/20/2005 12:26:30

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Dilution

Date

Sample Name:

TO63-R2-SB01-0-0.5

Lab Code:

K2502497-003

Extraction Method:

EPA 5035

Units: ug/Kg Basis: Dry

Level: Low

Extraction

Analysis Method:	8260B
Analyte Name	

Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND	U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
Chloromethane	ND	U	6.5	1.6	1	04/11/05	04/12/05	KWG0505901	
Vinyl Chloride	ND	U	6.5	0.96	1	04/11/05	04/12/05	KWG0505901	
Bromomethane	ND	U UJ	6.5	1.3	1	04/11/05	04/12/05	KWG0505901	
Chloroethane	ND	U	6.5	1.3	1	04/11/05	04/12/05	KWG0505901	
Trichlorofluoromethane	ND	U	6.5	1.2	1	04/11/05	04/12/05	KWG0505901	
Trichlorotrifluoroethane	ND	U	6.5	1.2	1	04/11/05	04/12/05	KWG0505901	
Acetone	ND	U	26	16	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethene	ND	U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
Methyl Acetate	ND	U	6.5	1.2	1	04/11/05	04/12/05	KWG0505901	
Carbon Disulfide	ND	U	6.5	2.4	1	04/11/05	04/12/05	KWG0505901	
Diisopropyl Ether	ND	U	13	0.53	1	04/11/05	04/12/05	KWG0505901	
Methylene Chloride	ND	U	13	3.9	1	04/11/05	04/12/05	KWG0505901	
Methyl tert-Butyl Ether	ND	U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
trans-1,2-Dichloroethene	ND	U	6.5	1.2	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethane	ND	U	6.5	1.3	1	04/11/05	04/12/05	KWG0505901	
2-Butanone (MEK)	ND	U	26	19	1	04/11/05	04/12/05	KWG0505901	
cis-1,2-Dichloroethene	ND	U	6.5	1.3	1	04/11/05	04/12/05	KWG0505901	
Chloroform	ND	U	6.5	0.89	1	04/11/05	04/12/05	KWG0505901	
1,1,1-Trichloroethane (TCA)	ND	U	6.5	0.89	1	04/11/05	04/12/05	KWG0505901	
Cyclohexane	ND	U UJ	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
Carbon Tetrachloride	ND	U	6.5	0.93	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloroethane (EDC)	ND	U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
Benzene	ND	U	6.5	1.3	1	04/11/05	04/12/05	KWG0505901	
Trichloroethene (TCE)	ND	U	6.5	0.44	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloropropane	ND	U	6.5	1.2	1	04/11/05	04/12/05	KWG0505901	
Bromodichloromethane	ND	U	6.5	0.82	1	04/11/05	04/12/05	KWG0505901	
Methylcyclohexane	ND			1.1	1	04/11/05	04/12/05	KWG0505901	
2-Hexanone	ND	U	26	9.5	1	04/11/05	04/12/05	KWG0505901	
cis-1,3-Dichloropropene	ND	U	6.5	1.2	1	04/11/05	04/12/05	KWG0505901	
Toluene	ND		6.5	1.3	1	04/11/05	04/12/05	KWG0505901	
trans-1,3-Dichloropropene	ND		6.5	0.93	1	04/11/05	04/12/05	KWG0505901	
1,1,2-Trichloroethane	ND	U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	

Comments:

Printed: 04/20/2005 12:26:33

u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference:

Page 1 of 2

Analytical Results

Client: Project:

Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R2-SB01-0-0.5

Lab Code:

K2502497-003

Extraction Method: Analysis Method:

EPA 5035

8260B

Units:	ug/Kg
Basis:	Dry
Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND U	26	8.6	1	04/11/05	04/12/05	KWG0505901	
Tetrachloroethene (PCE)	ND U	6.5	0.48	1	04/11/05	04/12/05	KWG0505901	
Dibromochloromethane	ND U	6.5	0.93	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromoethane (EDB)	ND U	26	1.3	1	04/11/05	04/12/05	KWG0505901	
Chlorobenzene	ND U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
Ethylbenzene	ND U	6.5	0.89	1	04/11/05	04/12/05	KWG0505901	
m,p-Xylenes	ND U	6.5	2.4	1	04/11/05	04/12/05	KWG0505901	
o-Xylene	ND U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
Styrene	ND U	6.5	1.2	1	04/11/05	04/12/05	KWG0505901	
Bromoform	ND U	6.5	1.2	1	04/11/05	04/12/05	KWG0505901	
Isopropylbenzene	ND U	26	1.1	1	04/11/05	04/12/05	KWG0505901	
1,1,2,2-Tetrachloroethane	ND U	6.5	1.2	1	04/11/05	04/12/05	KWG0505901	
1,3-Dichlorobenzene	ND U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
1,4-Dichlorobenzene	ND U	6.5	1.3	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichlorobenzene	ND U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromo-3-chloropropane	ND U	26	1.4	1	04/11/05	04/12/05	KWG0505901	
1,2,4-Trichlorobenzene	ND U	26	1.2	- 1	04/11/05	04/12/05	KWG0505901	
Naphthalene	ND U	26	1.4	1	04/11/05	04/12/05	KWG0505901	
Bromochloromethane	ND U	6.5	1.6	1	04/11/05	04/12/05	KWG0505901	
1,2,3-Trichlorobenzene	ND U	26	1.4	1	04/11/05	04/12/05	KWG0505901	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	106	70-119	04/12/05	Acceptable
Toluene-d8	108	72-121	04/12/05	Acceptable
4-Bromofluorobenzene	105	66-122	04/12/05	Acceptable

Comments:

SuperSet Reference:

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Dilution

Date

Sample Name:

TO63-R2-SB01-0-0.5 DUP

Lab Code:

K2502497-004

EPA 5035

Units: ug/Kg Basis: Dry

Level: Low

Extraction

Extraction Method:	EPA 503
Analysis Method:	8260B

				DHALLON	A) LLCC	2000	ACTIVITY SECURITY	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
Chloromethane	ND U	6.5	1.5	1	04/11/05	04/12/05	KWG0505901	
Vinyl Chloride	ND U	6.5	0.90	1	04/11/05	04/12/05	KWG0505901	
Bromomethane	ND U UJ	6.5	1.2	1	04/11/05	04/12/05	KWG0505901	
Chloroethane	ND U	6.5	1.2	1	04/11/05	04/12/05	KWG0505901	
Trichlorofluoromethane	ND U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
Trichlorotrifluoroethane	ND U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
Acetone	ND U	26	15	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethene	ND U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
Methyl Acetate	ND U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
Carbon Disulfide	ND U	6.5	2.2	1	04/11/05	04/12/05	KWG0505901	
Diisopropyl Ether	ND U	13	0.49	1	04/11/05	04/12/05	KWG0505901	
Methylene Chloride	ND U	13	3.7	1	04/11/05	04/12/05	KWG0505901	
Methyl tert-Butyl Ether	ND U	6.5	0.94	1	04/11/05	04/12/05	KWG0505901	
trans-1,2-Dichloroethene	ND U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethane	ND U	6.5	1.2	1	04/11/05	04/12/05	KWG0505901	
2-Butanone (MEK)	ND U	26	18	1	04/11/05	04/12/05	KWG0505901	
cis-1,2-Dichloroethene	ND U	6.5	1.2	1	04/11/05	04/12/05	KWG0505901	
Chloroform	ND U	6.5	0.83	1	04/11/05	04/12/05	KWG0505901	
1,1,1-Trichloroethane (TCA)	ND U	6.5	0.83	1	04/11/05	04/12/05	KWG0505901	
Cyclohexane	IN U DN	6.5	0.97	1	04/11/05	04/12/05	KWG0505901	
Carbon Tetrachloride	ND U	6.5	0.87	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloroethane (EDC)	ND U	6.5	0.97	1	04/11/05	04/12/05	KWG0505901	
Benzene	ND U	6.5	1.2	1	04/11/05	04/12/05	KWG0505901	
Trichloroethene (TCE)	ND U	6.5	0.41	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloropropane	ND U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
Bromodichloromethane	ND U	6.5	0.77	1	04/11/05	04/12/05	KWG0505901	
Methylcyclohexane	ND U UJ	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
2-Hexanone	ND U	26	8.8	1	04/11/05	04/12/05	KWG0505901	
cis-1,3-Dichloropropene	ND U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
Toluene	ND U	6.5	1.3	1	04/11/05	04/12/05	KWG0505901	
trans-1,3-Dichloropropene	ND U	6.5	0.87	1	04/11/05	04/12/05	KWG0505901	
1,1,2-Trichloroethane	ND U	6.5	1.0	1	04/11/05	04/12/05	KWG0505901	

Comments:

Printed: 04/20/2005 12:26:35

u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference:

Page 1 of 2

950

Analytical Results

Client:

Battelle Memorial Institute Novato Ballfields/G486063

Project: Sample Matrix:

Soil

Service Request: K2502497 Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R2-SB01-0-0.5 DUP

Lab Code:

K2502497-004

Extraction Method:

EPA 5035

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method:

8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methyl-2-pentanone (MIBK)	ND U	26	8.0	1	04/11/05	04/12/05	KWG0505901	
Tetrachloroethene (PCE)	ND U	6.5	0.45	1	04/11/05	04/12/05	KWG0505901	
Dibromochloromethane	ND U	6.5	0.87	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromoethane (EDB)	ND U	26	1.2	1	04/11/05	04/12/05	KWG0505901	
Chlorobenzene	ND U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
Ethylbenzene	ND U	6.5	0.83	1	04/11/05	04/12/05	KWG0505901	
m,p-Xylenes	ND U	6.5	2.2	1	04/11/05	04/12/05	KWG0505901	
o-Xylene	ND U	6.5	1.0	1	04/11/05	04/12/05	KWG0505901	
Styrene	ND U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
Bromoform	ND U	6.5	1.2	1	04/11/05	04/12/05	KWG0505901	
Isopropylbenzene	ND U	26	0.98	1	04/11/05	04/12/05	KWG0505901	
1,1,2,2-Tetrachloroethane	ND U	6.5	1.1	. 1	04/11/05	04/12/05	KWG0505901	
1,3-Dichlorobenzene	ND U	6.5	1.1	1	04/11/05	04/12/05	KWG0505901	
1,4-Dichlorobenzene	ND U	6.5	1.2	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichlorobenzene	ND U	6.5	0.94	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromo-3-chloropropane	ND U	26	1.3	1	04/11/05	04/12/05	KWG0505901	
1,2,4-Trichlorobenzene	ND U	26	1.2	1	04/11/05	04/12/05	KWG0505901	
Naphthalene	ND U	26	1.3	1	04/11/05	04/12/05	KWG0505901	
Bromochloromethane	ND U	6.5	1.5	1	04/11/05	04/12/05	KWG0505901	
1,2,3-Trichlorobenzene	ND U	26	1.3	1	04/11/05	04/12/05	KWG0505901	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	105	70-119	04/12/05	Acceptable	
Toluene-d8	108	72-121	04/12/05	Acceptable	
4-Bromofluorobenzene	103	66-122	04/12/05	Acceptable	

Comments:

Printed: 04/20/2005 12:26:35

u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference:

RR47238

2 of 2 Page

951

Analytical Results

Client: Project:

Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R2-SB01-1-2

Lab Code:

K2502497-005

Extraction Method: Analysis Method:

EPA 5035 8260B

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND U	7.9	1.2	1	04/11/05	04/12/05	KWG0505901	
Chloromethane	ND U	7.9	1.6	1	04/11/05	04/12/05	KWG0505901	
Vinyl Chloride	ND U	7.9	0.98	1	04/11/05	04/12/05	KWG0505901	
Bromomethane	LN U DN	7.9	1.3	1	04/11/05	04/12/05	KWG050 <u>5</u> 901	
Chloroethane	ND U	7.9	1.3	1	04/11/05	04/12/05	KWG0505901	
Trichlorofluoromethane	ND U	7.9	1.2	1	04/11/05	04/12/05	KWG0505901	
Trichlorotrifluoroethane	ND U	7.9	1.2	1	04/11/05	04/12/05	KWG0505901	
Acetone	ND U	32	16	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethene	ND U	7.9	1.2	1	04/11/05	04/12/05	KWG0505901	
Methyl Acetate	ND U	7.9	1.2	1	04/11/05	04/12/05	KWG0505901	
Carbon Disulfide	ND U	7.9	2.4	1	04/11/05	04/12/05	KWG0505901	
Diisopropyl Ether	ND U	16	0.54	1	04/11/05	04/12/05	KWG0505901	
Methylene Chloride	ND U	16	4.0	1	04/11/05	04/12/05	KWG0505901	
Methyl tert-Butyl Ether	ND U	7.9	1.1	1	04/11/05	04/12/05	KWG0505901	
trans-1,2-Dichloroethene	ND U	7.9	1.2	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethane	ND U	7.9	1.3	1	04/11/05	04/12/05	KWG0505901	J
2-Butanone (MEK)	ND U	32	19	1	04/11/05	04/12/05	KWG0505901	
cis-1,2-Dichloroethene	ND U	7.9	1.4	1	04/11/05	04/12/05	KWG0505901	
Chloroform	ND U	7.9	0.91	1	04/11/05	04/12/05	KWG0505901	
1,1,1-Trichloroethane (TCA)	ND U	7.9	0.91	1	04/11/05	04/12/05	KWG0505901	
Cyclohexane	ND U UJ	7.9	1.1	1	04/11/05	04/12/05	KWG0505901	
Carbon Tetrachloride	ND U	7.9	0.95	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloroethane (EDC)	ND U	7.9	1.1	1	04/11/05	04/12/05	KWG0505901	
Benzene	ND U	7.9	1.3	1	04/11/05	04/12/05	KWG0505901	
Trichloroethene (TCE)	ND U	7.9	0.45	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloropropane	ND U	7.9	1.2	1	04/11/05	04/12/05	KWG0505901	
Bromodichloromethane	ND U	7.9	0.84	1	04/11/05	04/12/05	KWG0505901	
Methylcyclohexane	TH U DN	7.9	1.2	1	04/11/05	04/12/05	KWG0505901	
2-Hexanone	ND U	32	9.7	1	04/11/05	04/12/05	KWG0505901	
cis-1,3-Dichloropropene	ND U	7.9	1.3	1	04/11/05	04/12/05	KWG0505901	
Toluene	ND U	7.9	1.4	1	04/11/05	04/12/05	KWG0505901	***************************************
trans-1,3-Dichloropropene	ND U	7.9	0.95	1	04/11/05	04/12/05	KWG0505901	
1,1,2-Trichloroethane	ND U	7.9	1.1	1	04/11/05	04/12/05	KWG0505901	
							.,,	

Comments:

Analytical Results

Client:

Battelle Memorial Institute

Project:

Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497 Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R2-SB01-1-2

Lab Code:

K2502497-005

Extraction Method: Analysis Method:

EPA 5035 8260B

Units: ug/Kg Basis: Dry

Level: Low

	D 1/ 0	MDI	MDI	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name	Result Q	MRL	MDL	Factor			KWG0505901	11000
4-Methyl-2-pentanone (MIBK)	ND U	32	8.7	1	04/11/05	04/12/05		
Tetrachloroethene (PCE)	ND U	7.9	0.49	1	04/11/05	04/12/05	KWG0505901	
Dibromochloromethane	ND U	7.9	0.95	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromoethane (EDB)	ND U	32	1.3	1	04/11/05	04/12/05	KWG0505901	
Chlorobenzene	ND U	7.9	1.2	1	04/11/05	04/12/05	KWG0505901	
Ethylbenzene	ND U	7.9	0.91	1	04/11/05	04/12/05	KWG0505901	
m,p-Xylenes	ND U	7.9	2.4	1	04/11/05	04/12/05	KWG0505901	
o-Xylene	ND U	7.9	1.1	1	04/11/05	04/12/05	KWG0505901	
Styrene	ND U	7.9	1.2	1	04/11/05	04/12/05	KWG0505901	
Bromoform	ND U	7.9	1.3	1	04/11/05	04/12/05	KWG0505901	
Isopropylbenzene	ND U	32	1.1	1	04/11/05	04/12/05	KWG0505901	
1,1,2,2-Tetrachloroethane	ND U	7.9	1.2	1	04/11/05	04/12/05	KWG0505901	
1,3-Dichlorobenzene	ND U	7.9	1.2	1	04/11/05	04/12/05	KWG0505901	
1,4-Dichlorobenzene	ND U	7.9	1.3	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichlorobenzene	ND U	7.9	1.1	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromo-3-chloropropane	ND U	32	1.4	1	04/11/05	04/12/05	KWG0505901	
1,2,4-Trichlorobenzene	ND U	32	1.3	1	04/11/05	04/12/05	KWG0505901	
Naphthalene	ND U	32	1.5	1	04/11/05	04/12/05	KWG0505901	
Bromochloromethane	ND U	7.9	1.6	1	04/11/05	04/12/05	KWG0505901	
1,2,3-Trichlorobenzene	ND U	32	1.5	1	04/11/05	04/12/05	KWG0505901	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	106	70-119	04/12/05	Acceptable	
Toluene-d8	106	72-121	04/12/05	Acceptable	
4-Bromofluorobenzene	101	66-122	04/12/05	Acceptable	

Comments:

Printed: 04/20/2005 12:26:37

Merged

 $u: \label{lem:condition} u: \label{lem:condition} u: \label{lem:condition} Stealth \color="color="text-align: center;" is a condition of the color="text-align: center;" is a condition of the center;" is a condition of the center; is a$

Form 1A - Organic

SuperSet Reference:

2 of 2 Page

953

RR47238

Analytical Results

Battelle Memorial Institute Client: Novato Ballfields/G486063 Project:

Sample Matrix: Soil Service Request: K2502497 Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Units: ug/Kg TO63-R1-SB04-0-0.5 Sample Name: Basis: Dry K2502497-006 Lab Code: Level: Low EPA 5035 **Extraction Method:**

8260B Analysis Method:

Auglinda Marsa	Result	0	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name	ND		5.5	0.80	1	04/11/05	04/12/05	KWG0505901	
Dichlorodifluoromethane	ND ND		5.5 5.5	1.2	1	04/11/05	04/12/05	KWG0505901	
Chloromethane Vinyl Chloride	ND ND		5.5	0.71	1	04/11/05	04/12/05	KWG0505901	
	ND		5.5	0.91	1	04/11/05	04/12/05	KWG0505901	
Bromomethane	ND ND	_	5.5 5.5	0.89	1	04/11/05	04/12/05	KWG0505901	
Chloroethane Trichlorofluoromethane	ND		5.5	0.83	î	04/11/05	04/12/05	KWG0505901	
Trichlorotrifluoroethane		U	5.5	0.84	1	04/11/05	04/12/05	KWG0505901	
Acetone	ND		22	12	i	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethene	ND		5.5	0.81	1	04/11/05	04/12/05	KWG0505901	
	ND		5.5	0.84	1	04/11/05	04/12/05	KWG0505901	
Methyl Acetate Carbon Disulfide	ND		5.5	1.7	l	04/11/05	04/12/05	KWG0505901	
Diisopropyl Ether	ND		11	0.39	1	04/11/05	04/12/05	KWG0505901	
Methylene Chloride	3.5		11	2.9	1	04/11/05	04/12/05	KWG0505901	
Methyl tert-Butyl Ether	ND		5.5	0.74	ī	04/11/05	04/12/05	KWG0505901	
trans-1,2-Dichloroethene	ND		5.5	0.83	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethane	ND		5.5	0.89	1	04/11/05	04/12/05	KWG0505901	
2-Butanone (MEK)		Ü	22	14	1	04/11/05	04/12/05	KWG0505901	
cis-1,2-Dichloroethene	ND		5.5	0.94	1	04/11/05	04/12/05	KWG0505901	
Chloroform	ND		5.5	0.65	l	04/11/05	04/12/05	KWG0505901	
1,1,1-Trichloroethane (TCA)	ND		5.5	0.65	1	04/11/05	04/12/05	KWG0505901	
Cyclohexane	ND	UUJ	5.5	0.76	1	04/11/05	04/12/05	KWG0505901	
Carbon Tetrachloride	ND	U	5.5	0.68	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloroethane (EDC)	ND		5.5	0.76	1	04/11/05	04/12/05	KWG0505901	
Benzene	ND	U	5.5	0.90	1	04/11/05	04/12/05	KWG0505901	
Trichloroethene (TCE)	ND	U	5.5	0.32	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloropropane	ND		5.5	0.82	1	04/11/05	04/12/05	KWG0505901	
Bromodichloromethane	ND	U	5.5	0.61	1	04/11/05	04/12/05	KWG0505901	
Methylcyclohexane	ND	UUS	5.5	0.81	1	04/11/05	04/12/05	KWG0505901	
2-Hexanone	ND		22	7.0	1	04/11/05	04/12/05	KWG0505901	
cis-1,3-Dichloropropene	ND	U	5.5	0.87	1	04/11/05	04/12/05	KWG0505901	
Toluene	ND	U	5.5	0.96	1	04/11/05	04/12/05	KWG0505901	
trans-1,3-Dichloropropene	ND	U	5.5	0.68	1	04/11/05	04/12/05	KWG0505901	
1,1,2-Trichloroethane	ND	U	5.5	0.79	1	04/11/05	04/12/05	KWG0505901	

Comments:

Printed: 04/20/2005 12:26:39 $u: \Stealth \Crystal.rpt \Form \Im.rpt$

Merged

Form 1A - Organic 954

SuperSet Reference: RR47238 Page 1 of 2

Analytical Results

Client: Project:

Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R1-SB04-0-0.5

Lab Code:

K2502497-006

Extraction Method: Analysis Method:

EPA 5035 8260B

Units: ug/Kg Basis: Dry

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND	U	22	6.3	1	04/11/05	04/12/05	KWG0505901	
Tetrachloroethene (PCE)	ND	U	5.5	0.36	1	04/11/05	04/12/05	KWG0505901	
Dibromochloromethane	ND	U	5.5	0.68	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromoethane (EDB)	ND	U	22	0.90	1	04/11/05	04/12/05	KWG0505901	
Chlorobenzene	ND	U	5.5	0.80	1	04/11/05	04/12/05	KWG0505901	
Ethylbenzene	ND	U	5.5	0.65	1	04/11/05	04/12/05	KWG0505901	
m,p-Xylenes	ND	U	5.5	1.7	1	04/11/05	04/12/05	KWG0505901	
o-Xylene	ND	U	5.5	0.79	1	04/11/05	04/12/05	KWG0505901	
Styrene	ND	U	5.5	0.83	1	04/11/05	04/12/05	KWG0505901	
Bromoform	ND	U	5.5	0.88	1	04/11/05	04/12/05	KWG0505901	
Isopropylbenzene	ND	U	22	0.78	1	04/11/05	04/12/05	KWG0505901	
1,1,2,2-Tetrachloroethane	ND	U	5.5	0.84	1	04/11/05	04/12/05	KWG0505901	
1,3-Dichlorobenzene	ND	U	5.5	0.81	1	04/11/05	04/12/05	KWG0505901	
1,4-Dichlorobenzene	ND	U	5.5	0.93	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichlorobenzene	ND	U	5.5	0.74	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromo-3-chloropropane	ND	U	22	0.97	1	04/11/05	04/12/05	KWG0505901	
1,2,4-Trichlorobenzene	ND	U	22	0.88	1	04/11/05	04/12/05	KWG0505901	
Naphthalene	ND	U	22	1.1	1	04/11/05	04/12/05	KWG0505901	
Bromochloromethane	ND	U	5.5	1.2	1	04/11/05	04/12/05	KWG0505901	
1,2,3-Trichlorobenzene	ND	U	22	1.1	1	04/11/05	04/12/05	KWG0505901	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	105	70-119	04/12/05	Acceptable	
Toluene-d8	110	72-121	04/12/05	Acceptable	
4-Bromofluorobenzene	110	66-122	04/12/05	Acceptable	

Comments:

Printed: 04/20/2005 12:26:39 $u: \label{lem:condition} u: \label{lem:condi$

Form 1A - Organic

Page 2 of 2 RR47238

SuperSet Reference:

Merged

Analytical Results

Client: Battelle Memorial Institute Project: Novato Ballfields/G486063

Sample Matrix: Soil Service Request: K2502497 **Date Collected:** 04/06/2005 Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name: TO63-R1-SB04-4-5 Lab Code: K2502497-007

Extraction Method: EPA 5035 **Analysis Method:** 8260B

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND U	9.4	1.4	1	04/11/05	04/12/05	KWG0505901	
Chloromethane	ND U	9.4	1.9	1	04/11/05	04/12/05	KWG0505901	
Vinyl Chloride	ND U	9.4	1.2	1	04/11/05	04/12/05	KWG0505901	
Bromomethane	EN U DN	9.4	1.5	1	04/11/05	04/12/05	KWG0505901	
Chloroethane	ND U	9.4	1.5	1	04/11/05	04/12/05	KWG0505901	
Trichlorofluoromethane	ND U	9.4	1.4	1	04/11/05	04/12/05	KWG0505901	
Trichlorotrifluoroethane	ND U	9.4	1.4	1	04/11/05	04/12/05	KWG0505901	
Acetone	ND U	38	19	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethene	ND U	9.4	1.4	1	04/11/05	04/12/05	KWG0505901	
Methyl Acetate	ND U	9.4	1.4	1	04/11/05	04/12/05	KWG0505901	
Carbon Disulfide	ND U	9.4	2.8	1	04/11/05	04/12/05	KWG0505901	
Diisopropyl Ether	ND U	19	0.64	1	04/11/05	04/12/05	KWG0505901	
Methylene Chloride	ND U	19	4.7	1	04/11/05	04/12/05	KWG0505901	
Methyl tert-Butyl Ether	ND U	9.4	1.3	1	04/11/05	04/12/05	KWG0505901	
trans-1,2-Dichloroethene	ND U	9.4	1.4	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethane	ND U	9.4	1.5	1	04/11/05	04/12/05	KWG0505901	
2-Butanone (MEK)	ND U	38	23	1	04/11/05	04/12/05	KWG0505901	
cis-1,2-Dichloroethene	ND U	9.4	1.6	1	04/11/05	04/12/05	KWG0505901	
Chloroform	ND U	9.4	1.1	1	04/11/05	04/12/05	KWG0505901	
1,1,1-Trichloroethane (TCA)	ND U	9.4	1.1	1	04/11/05	04/12/05	KWG0505901	
Cyclohexane	ND U UJ	9.4	1.3	1	04/11/05	04/12/05	KWG0505901	
Carbon Tetrachloride	ND U	9.4	1.2	1	04/11/05	04/12/05	KWG0505901	~~.
1,2-Dichloroethane (EDC)	ND U	9.4	1.3	1	04/11/05	04/12/05	KWG0505901	
Benzene	ND U	9.4	1.5	1	04/11/05	04/12/05	KWG0505901	
Trichloroethene (TCE)	ND U	9.4	0.53	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloropropane	ND U	9.4	1.4	1	04/11/05	04/12/05	KWG0505901	
Bromodichloromethane	ND U	9.4	0.99	1	04/11/05	04/12/05	KWG0505901	
Methylcyclohexane	ND U UJ	9.4	1.4	1	04/11/05	04/12/05	KWG0505901	
2-Hexanone	ND U	38	12	1	04/11/05	04/12/05	KWG0505901	
cis-1,3-Dichloropropene	ND U	9.4	1.5	1	04/11/05	04/12/05	KWG0505901	
Toluene	ND U	9.4	1.6	1	04/11/05	04/12/05	KWG0505901	-
trans-1,3-Dichloropropene	ND U	9.4	1.2	1	04/11/05		KWG0505901	
1,1,2-Trichloroethane	ND U	9.4	1.3	71	04/11/05		KWG0505901	
			***************************************		~~~~			

Comments:

Printed: 04/20/2005 12:26:41

Merged

u:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

Page 1 of

956

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497 Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name: Lab Code:

TO63-R1-SB04-4-5 K2502497-007

Extraction Method:

EPA 5035

Units: ug/Kg Basis: Dry Level: Low

8260B **Analysis Method:**

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND	U	38	11	1	04/11/05	04/12/05	KWG0505901	
Tetrachloroethene (PCE)	ND	U	9.4	0.58	1	04/11/05	04/12/05	KWG0505901	
Dibromochloromethane	ND	U	9.4	1.2	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromoethane (EDB)	ND	U	38	1.5	1	04/11/05	04/12/05	KWG0505901	
Chlorobenzene	ND	U	9.4	1.4	1	04/11/05	04/12/05	KWG0505901	
Ethylbenzene	ND	U	9.4	1.1	1	04/11/05	04/12/05	KWG0505901	
m,p-Xylenes	ND	U	9.4	2.8	1	04/11/05	04/12/05	KWG0505901	
o-Xylene	ND	U	9.4	1.3	1	04/11/05	04/12/05	KWG0505901	
Styrene	ND	U	9.4	1.4	1	04/11/05	04/12/05	KWG0505901	
Bromoform	ND	U	9.4	1.5	1	04/11/05	04/12/05	KWG0505901	
Isopropylbenzene	ND	U	38	1.3	1	04/11/05	04/12/05	KWG0505901	
1,1,2,2-Tetrachloroethane	ND	U	9.4	1.4	1	04/11/05	04/12/05	KWG0505901	
1,3-Dichlorobenzene	ND	U	9.4	1.4	1	04/11/05	04/12/05	KWG0505901	
1,4-Dichlorobenzene	ND	U	9.4	1.6	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichlorobenzene	ND	U	9.4	1.3	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromo-3-chloropropane	ND	U	38	1.6	1	04/11/05	04/12/05	KWG0505901	
1,2,4-Trichlorobenzene	ND	U	38	1.5	1	04/11/05	04/12/05	KWG0505901	
Naphthalene	ND	U	38	1.7	1	04/11/05	04/12/05	KWG0505901	
Bromochloromethane	ND	U	9.4	1.9	1	04/11/05	04/12/05	KWG0505901	
1,2,3-Trichlorobenzene	ND	U	38	1.7	1	04/11/05	04/12/05	KWG0505901	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	106	70-119	04/12/05	Acceptable
Toluene-d8	110	72-121	04/12/05	Acceptable
4-Bromofluorobenzene	110	66-122	04/12/05	Acceptable

Comments:

Analytical Results

Client: Battelle Memorial Institute
Project: Novato Ballfields/G486063

Sample Matrix: Soil

Service Request: K2502497

Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

 Sample Name:
 TO63-R1-SB01-0-0.5

 Lab Code:
 K2502497-008

Extraction Method: EPA 5035 **Analysis Method:** 8260B

Units: ug/Kg
Basis: Dry
Level: Low

Extraction Dilution Date Date Analyzed MRL MDL **Factor** Extracted Lot Note Result Q **Analyte Name** KWG0505901 04/12/05 04/11/05 4.5 0.79 1 Dichlorodifluoromethane ND U 04/11/05 KWG0505901 04/12/05 1 ND U 4.5 1.2 Chloromethane KWG0505901 04/11/05 04/12/05 0.70 1 ND U 4.5 Vinyl Chloride 0.90 1 04/11/05 04/12/05 KWG0505901 LN U DN 4.5 Bromomethane 04/11/05 04/12/05 KWG0505901 1 0.88 ND U 4.5 Chloroethane 04/12/05 KWG0505901 04/11/05 0.82 1 ND U 4.5 Trichlorofluoromethane KWG0505901 04/12/05 ND U 4.5 0.83 1 04/11/05 Trichlorotrifluoroethane KWG0505901 12 1 04/11/05 04/12/05 ND U 18 Acetone KWG0505901 0.80 1 04/11/05 04/12/05 ND U 4.5 1,1-Dichloroethene KWG0505901 04/12/05 1 ND U 4.5 0.83 04/11/05 Methyl Acetate KWG0505901 04/12/05 4.5 1.7 1 04/11/05 ND U Carbon Disulfide KWG0505901 04/12/05 0.39 1 04/11/05 ND U 9.0 Diisopropyl Ether KWG0505901 1 04/11/05 04/12/05 ND U 9.0 2.8 Methylene Chloride KWG0505901 04/12/05 0.73 04/11/05 ND U 4.5 1 Methyl tert-Butyl Ether 04/12/05 KWG0505901 04/11/05 0.82 1 ND U 4.5 trans-1,2-Dichloroethene 04/12/05 KWG0505901 04/11/05 0.88 1 ND U 4.5 1,1-Dichloroethane KWG0505901 14 1 04/11/05 04/12/05 ND U 18 2-Butanone (MEK) KWG0505901 0.93 1 04/11/05 04/12/05 ND U 4.5 cis-1,2-Dichloroethene KWG0505901 1 04/11/05 04/12/05 4.5 0.64 ND U Chloroform KWG0505901 04/12/05 0.64 1 04/11/05 ND U 4.5 1,1,1-Trichloroethane (TCA) 04/11/05 04/12/05 KWG0505901 ND U IJ 0.75 1 4.5 Cyclohexane 1 04/12/05 KWG0505901 4.5 0.68 04/11/05 ND U Carbon Tetrachloride 04/12/05 KWG0505901 0.75 1 04/11/05 ND U 4.5 1.2-Dichloroethane (EDC) KWG0505901 0.89 1 04/11/05 04/12/05 ND U 4.5 Benzene KWG0505901 04/12/05 1 04/11/05 ND U 4.5 0.32 Trichloroethene (TCE) KWG0505901 04/12/05 ND U 4.5 0.81 1 04/11/05 1,2-Dichloropropane KWG0505901 ND U 4.5 0.60 1 04/11/05 04/12/05 Bromodichloromethane KWG0505901 04/11/05 04/12/05 0.80 1 4.5 LN U DN Methylcyclohexane KWG0505901 04/12/05 04/11/05 6.9 1 ND U 18 2-Hexanone KWG0505901 04/12/05 1 04/11/05 cis-1,3-Dichloropropene ND U 4.5 0.8604/11/05 04/12/05 KWG0505901 4.5 0.94 1 ND U Toluene 04/11/05 04/12/05 KWG0505901 0.68 1 ND U 4.5 trans-1,3-Dichloropropene 04/12/05 KWG0505901 04/11/05 0.78 7 ND U 4.5 1.1.2-Trichloroethane

Comments:

-(c/1/1)

Printed: 04/20/2005 12:26:44

u:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

SuperSet Reference: RR47238

Analytical Results

Client: Project:

Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R1-SB01-0-0.5

Lab Code:

K2502497-008

Extraction Method: Analysis Method:

EPA 5035 8260B Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND U	18	6.2	1	04/11/05	04/12/05	KWG0505901	
Tetrachloroethene (PCE)	ND U	4.5	0.35	1	04/11/05	04/12/05	KWG0505901	
Dibromochloromethane	ND U	4.5	0.68	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromoethane (EDB)	ND U	18	0.89	1	04/11/05	04/12/05	KWG0505901	
Chlorobenzene	ND U	4.5	0.79	1	04/11/05	04/12/05	KWG0505901	
Ethylbenzene	ND U	4.5	0.64	1	04/11/05	04/12/05	KWG0505901	
m,p-Xylenes	ND U	4.5	1.7	1	04/11/05	04/12/05	KWG0505901	
o-Xylene	ND U	4.5	0.78	1	04/11/05	04/12/05	KWG0505901	
Styrene	ND U	4.5	0.82	1	04/11/05	04/12/05	KWG0505901	
Bromoform	ND U	4.5	0.87	1	04/11/05	04/12/05	KWG0505901	
Isopropylbenzene	ND U	18	0.77	1	04/11/05	04/12/05	KWG0505901	
1,1,2,2-Tetrachloroethane	ND U	4.5	0.83	1	04/11/05	04/12/05	KWG0505901	
1,3-Dichlorobenzene	ND U	4.5	0.80	1	04/11/05	04/12/05	KWG0505901	
1,4-Dichlorobenzene	ND U	4.5	0.92	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichlorobenzene	ND U	4.5	0.73	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromo-3-chloropropane	ND U	18	0.96	1	04/11/05	04/12/05	KWG0505901	
1,2,4-Trichlorobenzene	ND U	18	0.87	1	04/11/05	04/12/05	KWG0505901	
Naphthalene	ND U	18	1.0	1	04/11/05	04/12/05	KWG0505901	
Bromochloromethane	ND U	4.5	1.1	1	04/11/05	04/12/05	KWG0505901	
1,2,3-Trichlorobenzene	ND U	18	1.1	1	04/11/05	04/12/05	KWG0505901	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	106	70-119	04/12/05	Acceptable
Toluene-d8	110	72-121	04/12/05	Acceptable
4-Bromofluorobenzene	108	66-122	04/12/05	Acceptable

Comments:

Analytical Results

Client:

Battelle Memorial Institute Novato Ballfields/G486063

Project: Sample Matrix:

Soil

Service Request: K2502497 Date Collected: 04/06/2005 Date Received: 04/07/2005

Units: ug/Kg

Basis: Dry

Level: Low

Volatile Organic Compounds

Sample Name:

TO63-R1-SB03-0-0.5

Lab Code:

K2502497-009

Extraction Method:

EPA 5035

Analysis Method:

8260B

Date Extraction Date Dilution Note Analyzed Lot **Factor** Extracted MRL MDL Result Q Analyte Name KWG0506003 0.86 04/12/05 04/12/05 ND U 5.4 1 Dichlorodifluoromethane KWG0506003 1 04/12/05 04/12/05 5.4 1.3 ND U Chloromethane 04/12/05 KWG0506003 04/12/05 5.4 0.76 1 ND U Vinyl Chloride KWG0506003 04/12/05 04/12/05 LN U DN 54 0.99 1 Bromomethane KWG0506003 04/12/05 04/12/05 5.4 0.96 1 ND U Chloroethane KWG0506003 04/12/05 04/12/05 0.90 1 ND U 5.4 Trichlorofluoromethane 04/12/05 KWG0506003 5.4 0.91 1 04/12/05 ND U Trichlorotrifluoroethane KWG0506003 04/12/05 04/12/05 13 1 ND U 22 Acetone KWG0506003 04/12/05 04/12/05 0.88 1 5.4 ND U 1,1-Dichloroethene 04/12/05 04/12/05 KWG0506003 0.91 ND U 5.4 1 Methyl Acetate 04/12/05 KWG0506003 5.4 1.9 1 04/12/05 ND U Carbon Disulfide KWG0506003 04/12/05 0.42 1 04/12/05 11 Diisopropyl Ether ND U KWG0506003 04/12/05 11 3.1 1 04/12/05 ND U Methylene Chloride KWG0506003 04/12/05 04/12/05 0.80 1 ND U 5.4 Methyl tert-Butyl Ether KWG0506003 04/12/05 04/12/05 5.4 0.90 1 ND U trans-1,2-Dichloroethene KWG0506003 1 04/12/05 04/12/05 5.4 0.96 ND U 1.1-Dichloroethane KWG0506003 04/12/05 15 1 04/12/05 ND U 22 2-Butanone (MEK) KWG0506003 1 04/12/05 04/12/05 5.4 1.1 ND U cis-1,2-Dichloroethene KWG0506003 04/12/05 04/12/05 5.4 0.70 1 ND U Chloroform KWG0506003 04/12/05 04/12/05 1,1,1-Trichloroethane (TCA) ND U 5.4 0.70 1 04/12/05 KWG0506003 0.83 1 04/12/05 ND U W 5.4 Cyclohexane KWG0506003 04/12/05 04/12/05 0.74 1 5.4 ND U Carbon Tetrachloride 04/12/05 KWG0506003 04/12/05 ND U 5.4 0.83 1 1.2-Dichloroethane (EDC) KWG0506003 0.97 04/12/05 04/12/05 ND U 5.4 1 Benzene 04/12/05 04/12/05 KWG0506003 5.4 0.35 1 ND U Trichloroethene (TCE) 04/12/05 04/12/05 KWG0506003 0.89 ND U 5.4 1 1,2-Dichloropropane 04/12/05 KWG0506003 04/12/05 ND U 0.65 1 5.4 Bromodichloromethane KWG0506003 0.88 1 04/12/05 04/12/05 ND U IS 5.4 Methylcyclohexane KWG0506003 1 04/12/05 04/12/05 7.5 ND U 22 2-Hexanone KWG0506003 04/12/05 04/12/05 5.4 0.94 1 ND U cis-1.3-Dichloropropene KWG0506003 04/12/05 04/12/05 ND U 54 1.1 1 Toluene KWG0506003 04/12/05 5.4 0.74 1 04/12/05 ND U trans-1,3-Dichloropropene KWG0506003 04/12/05 04/12/05

Comments:

0.85

5.4

posses

1,1,2-Trichloroethane

ND U

Analytical Results

Client:

Battelle Memorial Institute

Project:

Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R1-SB03-0-0.5

Lab Code:

K2502497-009

Extraction Method: Analysis Method:

EPA 5035

8260B

Units: ug/Kg Basis: Dry

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND	U	22	6.8	1	04/12/05	04/12/05	KWG0506003	
Tetrachloroethene (PCE)	ND		5.4	0.38	1	04/12/05	04/12/05	KWG0506003	
Dibromochloromethane	ND		5.4	0.74	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromoethane (EDB)	ND	U	22	0.97	1	04/12/05	04/12/05	KWG0506003	
Chlorobenzene	ND	U	5.4	0.86	1	04/12/05	04/12/05	KWG0506003	
Ethylbenzene	ND	U	5.4	0.70	1	04/12/05	04/12/05	KWG0506003	
m,p-Xylenes	ND	U	5.4	1.9	1	04/12/05	04/12/05	KWG0506003	
o-Xylene	ND	U	5.4	0.85	1	04/12/05	04/12/05	KWG0506003	
Styrene	ND	U	5.4	0.90	1	04/12/05	04/12/05	KWG0506003	
Bromoform	ND	U	5.4	0.95	1	04/12/05	04/12/05	KWG0506003	
Isopropylbenzene	ND	U	22	0.84	1	04/12/05	04/12/05	KWG0506003	
1,1,2,2-Tetrachloroethane	ND	U	5.4	0.91	1	04/12/05	04/12/05	KWG0506003	
1,3-Dichlorobenzene	ND	U	5.4	0.88	1	04/12/05	04/12/05	KWG0506003	
1,4-Dichlorobenzene	ND	U	5.4	1.1	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichlorobenzene	ND	U	5.4	0.80	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromo-3-chloropropane	ND	U	22	1.1	1	04/12/05	04/12/05	KWG0506003	
1,2,4-Trichlorobenzene	ND	U	22	0.95	1	04/12/05	04/12/05	KWG0506003	
Naphthalene	ND	U	22	1.1	1	04/12/05	04/12/05	KWG0506003	
Bromochloromethane	ND	U	5.4	1.3	1	04/12/05	04/12/05	KWG0506003	
1,2,3-Trichlorobenzene	ND	U	22	1.2	1	04/12/05	04/12/05	KWG0506003	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	106	70-119	04/12/05	Acceptable
Toluene-d8	111	72-121	04/12/05	Acceptable
4-Bromofluorobenzene	111	66-122	04/12/05	Acceptable

Comments:

Printed: 04/20/2005 12:26:46

Merged $u: \Stealth \Crystal.rpt \Form \Im.rpt$

Form 1A - Organic

Page 2 of 2

SuperSet Reference:

Analytical Results

Client: Project:

Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date

Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Dilution

Date

Sample Name:

TO63-R1-SB03-4-5

Lab Code:

K2502497-010

Extraction Method: Analysis Method:

EPA 5035 8260B

Units: ug/Kg Basis: Dry

Level: Low

Extraction

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND U	8.0	1.2	1	04/12/05	04/12/05	KWG0506003	
Chloromethane	ND U	8.0	1.6	1	04/12/05	04/12/05	KWG0506003	
Vinyl Chloride	ND U	8.0	0.99	1	04/12/05	04/12/05	KWG0506003	
Bromomethane	ND U UJ	8.0	1.3	1	04/12/05	04/12/05	KWG0506003	
Chloroethane	ND U	8.0	1.3	1	04/12/05	04/12/05	KWG0506003	
Trichlorofluoromethane	ND U	8.0	1.2	1	04/12/05	04/12/05	KWG0506003	
Trichlorotrifluoroethane	ND U	8.0	1.2	1	04/12/05	04/12/05	KWG0506003	
Acetone	ND U	32	16	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethene	ND U	8.0	1.2	1	04/12/05	04/12/05	KWG0506003	
Methyl Acetate	ND U	8.0	1.2	1	04/12/05	04/12/05	KWG0506003	
Carbon Disulfide	ND U	8.0	2.4	1	04/12/05	04/12/05	KWG0506003	
Diisopropyl Ether	ND U	16	0.55	1	04/12/05	04/12/05	KWG0506003	
Methylene Chloride	ND U	16	4.0	1	04/12/05	04/12/05	KWG0506003	
Methyl tert-Butyl Ether	ND U	8.0	1.1	1	04/12/05	04/12/05	KWG0506003	
trans-1,2-Dichloroethene	ND U	8.0	1.2	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethane	ND U	8.0	1.3	1	04/12/05	04/12/05	KWG0506003	
2-Butanone (MEK)	ND U	32	20	1	04/12/05	04/12/05	KWG0506003	
cis-1,2-Dichloroethene	ND U	8.0	1.4	1	04/12/05	04/12/05	KWG0506003	
Chloroform	ND U	8.0	0.91	1	04/12/05	04/12/05	KWG0506003	
1,1,1-Trichloroethane (TCA)	ND U	8.0	0.91	1	04/12/05	04/12/05	KWG0506003	
Cyclohexane	ND U UJ	8.0	1.1	1	04/12/05	04/12/05	KWG0506003	
Carbon Tetrachloride	ND U	8.0	0.96	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloroethane (EDC)	ND U	8.0	1.1	1	04/12/05	04/12/05	KWG0506003	
Benzene	ND U	8.0	1.3	1	04/12/05	04/12/05	KWG0506003	
Trichloroethene (TCE)	ND U	8.0	0.45	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloropropane	ND U	8.0	1.2	1	04/12/05	04/12/05	KWG0506003	
Bromodichloromethane	ND U	8.0	0.85	1	04/12/05	04/12/05	KWG0506003	***********
Methylcyclohexane	NDUUS	8.0	1.2	1	04/12/05	04/12/05	KWG0506003	
2-Hexanone	ND U	32	9.8	1	04/12/05	04/12/05	KWG0506003	
cis-1,3-Dichloropropene	ND U	8.0	1.3	1	04/12/05	04/12/05	KWG0506003	
Toluene	ND U	8.0	1.4	1	04/12/05	04/12/05	KWG0506003	
trans-1,3-Dichloropropene	ND U	8.0	0.96	1000	04/12/05	04/12/05	KWG0506003	
1,1,2-Trichloroethane	ND U	8.0	1.2	1	04/12/05	04/12/05	KWG0506003	

Comments:

Printed: 04/20/2005 12:26:48

u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference:

RR47238

1 of 2 Page

Analytical Results

Client: Project:

Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

1

1

1

1

1

04/12/05

04/12/05

04/12/05

04/12/05

04/12/05

04/12/05

04/12/05

04/12/05

04/12/05

04/12/05

Service Request: K2502497 Date Collected: 04/06/2005 Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name: Lab Code:

TO63-R1-SB03-4-5 K2502497-010

Extraction Method: Analysis Method:

1,2-Dibromo-3-chloropropane

1,2,4-Trichlorobenzene

Bromochloromethane

1,2,3-Trichlorobenzene

Naphthalene

EPA 5035 8260B

Units: ug/Kg Basis: Dry Level: Low

KWG0506003

KWG0506003

KWG0506003

KWG0506003

KWG0506003

Dilution Date **Extraction** Date **MDL Factor Extracted Analyzed** Lot Note **MRL** Result Q Analyte Name KWG0506003 4-Methyl-2-pentanone (MIBK) ND U 32 8.8 1 04/12/05 04/12/05 KWG0506003 ND U 8.0 0.50 1 04/12/05 04/12/05 Tetrachloroethene (PCE) KWG0506003 04/12/05 Dibromochloromethane ND U 8.0 0.96 1 04/12/05 KWG0506003 1 04/12/05 ND U 32 1.3 04/12/05 1,2-Dibromoethane (EDB) KWG0506003 04/12/05 8.0 1.2 1 04/12/05 ND U Chlorobenzene KWG0506003 0.91 1 04/12/05 04/12/05 8.0 Ethylbenzene ND U 1 04/12/05 KWG0506003 ND U 8.0 2.4 04/12/05 m,p-Xylenes KWG0506003 8.0 1.2 1 04/12/05 04/12/05 ND U o-Xylene 04/12/05 KWG0506003 8.0 1.2 1 04/12/05 ND U Styrene 1 KWG0506003 8.0 1.3 04/12/05 ND U 04/12/05 Bromoform KWG0506003 04/12/05 04/12/05 ND U 32 1.1 1 Isopropylbenzene ND U 04/12/05 KWG0506003 8.0 1.2 1 04/12/05 1,1,2,2-Tetrachloroethane KWG0506003 1.2 1 04/12/05 04/12/05 ND U 8.0 1.3-Dichlorobenzene KWG0506003 1,4-Dichlorobenzene ND U 8.0 1.4 1 04/12/05 04/12/05 KWG0506003 ND U 8.0 1.1 1 04/12/05 04/12/05 1,2-Dichlorobenzene

1.4

1.3

1.5

1.6

1.5

32

32

32

8.0

32

ND U

ND U

ND U

ND U

ND U

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	106	70-119	04/12/05	Acceptable
Toluene-d8	111	72-121	04/12/05	Acceptable
4-Bromofluorobenzene	111	66-122	04/12/05	Acceptable

Comments:

RR47238

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R4-SB04-0-0.5

Lab Code:

K2502497-011

Extraction Method:

EPA 5035

Units: ug/Kg Basis: Dry

Level: Low

8260B **Analysis Method:**

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND U	4.2	0.80	1	04/12/05	04/12/05	KWG0506003	
Chloromethane	ND U	4.2	1.2	1	04/12/05	04/12/05	KWG0506003	
Vinyl Chloride	ND U	4.2	0.71	1	04/12/05	04/12/05	KWG0506003	
Bromomethane	ND U NJ	4.2	0.92	1	04/12/05	04/12/05	KWG0506003	
Chloroethane	ND U	4.2	0.89	1	04/12/05	04/12/05	KWG0506003	
Trichlorofluoromethane	ND U	4.2	0.84	1	04/12/05	04/12/05	KWG0506003	
Trichlorotrifluoroethane	ND U	4.2	0.85	1	04/12/05	04/12/05	KWG0506003	
Acetone	ND U	17	12	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethene	ND U	4.2	0.81	1	04/12/05	04/12/05	KWG0506003	
Methyl Acetate	ND U	4.2	0.85	1	04/12/05	04/12/05	KWG0506003	
Carbon Disulfide	ND U	4.2	1.8	1	04/12/05	04/12/05	KWG0506003	
Diisopropyl Ether	ND U	8.4	0.39	1	04/12/05	04/12/05	KWG0506003	
Methylene Chloride	ND U	8.4	2.9	1	04/12/05	04/12/05	KWG0506003	
Methyl tert-Butyl Ether	ND U	4.2	0.75	1	04/12/05	04/12/05	KWG0506003	
trans-1,2-Dichloroethene	ND U	4.2	0.84	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethane	ND U	4.2	0.89	1	04/12/05	04/12/05	KWG0506003	
2-Butanone (MEK)	ND U	17	14	1	04/12/05	04/12/05	KWG0506003	
cis-1,2-Dichloroethene	ND U	4.2	0.95	1	04/12/05	04/12/05	KWG0506003	
Chloroform	ND U	4.2	0.65	1	04/12/05	04/12/05	KWG0506003	
1,1,1-Trichloroethane (TCA)	ND U	4.2	0.65	1	04/12/05	04/12/05	KWG0506003	
Cyclohexane	LU U DN	4.2	0.77	1	04/12/05	04/12/05	KWG0506003	
Carbon Tetrachloride	ND U	4.2	0.69	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloroethane (EDC)	ND U	4.2	0.77	1	04/12/05	04/12/05	KWG0506003	
Benzene	ND U	4.2	0.90	1	04/12/05	04/12/05	KWG0506003	
Trichloroethene (TCE)	ND U	4.2	0.32	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloropropane	ND U	4.2	0.83	1	04/12/05	04/12/05	KWG0506003	
Bromodichloromethane	ND U	4.2	0.61	1	04/12/05	04/12/05	KWG0506003	
Methylcyclohexane	ND U UJ	4.2	0.81	1	04/12/05	04/12/05	KWG0506003	
2-Hexanone	ND U	17	7.0	1	04/12/05	04/12/05	KWG0506003	
cis-1,3-Dichloropropene	ND U	4.2	0.87	1	04/12/05	04/12/05	KWG0506003	
Toluene	ND U	4.2	0.96	1	04/12/05	04/12/05	KWG0506003	
trans-1,3-Dichloropropene	ND U	4.2	0.69	1	04/12/05	04/12/05	KWG0506003	
1,1,2-Trichloroethane	ND U	4.2	0.79	1	04/12/05	04/12/05	KWG0506003	

Comments:

Printed: 04/20/2005 12:26:50

Merged

Form 1A - Organic

SuperSet Reference:

1 of 2 Page

964

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005 Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R4-SB04-0-0.5

Lab Code:

K2502497-011

Units: ug/Kg Basis: Dry

Level: Low

Extraction

Extraction Method:	EPA 5035
Analysis Method:	8260B

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND U	17	6.3	1	04/12/05	04/12/05	KWG0506003	
Tetrachloroethene (PCE)	ND U	4.2	0.36	1	04/12/05	04/12/05	KWG0506003	
Dibromochloromethane	ND U	4.2	0.69	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromoethane (EDB)	ND U	17	0.90	1	04/12/05	04/12/05	KWG0506003	
Chlorobenzene	ND U	4.2	0.80	1	04/12/05	04/12/05	KWG0506003	
Ethylbenzene	ND U	4.2	0.65	1	04/12/05	04/12/05	KWG0506003	
m,p-Xylenes	ND U	4.2	1.8	1	04/12/05	04/12/05	KWG0506003	
o-Xylene	ND U	4.2	0.79	1	04/12/05	04/12/05	KWG0506003	
Styrene	ND U	4.2	0.84	1	04/12/05	04/12/05	KWG0506003	
Bromoform	ND U	4.2	0.88	1	04/12/05	04/12/05	KWG0506003	
Isopropylbenzene	ND U	17	0.78	1	04/12/05	04/12/05	KWG0506003	
1,1,2,2-Tetrachloroethane	ND U	4.2	0.85	1	04/12/05	04/12/05	KWG0506003	
1,3-Dichlorobenzene	ND U	4.2	0.81	1	04/12/05	04/12/05	KWG0506003	
1,4-Dichlorobenzene	ND U	4.2	0.94	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichlorobenzene	ND U	4.2	0.75	1 ·	04/12/05	04/12/05	KWG0506003	
1,2-Dibromo-3-chloropropane	ND U	17	0.97	1	04/12/05	04/12/05	KWG0506003	
1,2,4-Trichlorobenzene	ND U	17	0.88	1	04/12/05	04/12/05	KWG0506003	
Naphthalene	ND U	17	1.1	1	04/12/05	04/12/05	KWG0506003	
Bromochloromethane	ND U	4.2	1.2	1	04/12/05	04/12/05	KWG0506003	
1,2,3-Trichlorobenzene	ND U	17	1.1	1	04/12/05	04/12/05	KWG0506003	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	106	70-119	04/12/05	Acceptable	
Toluene-d8	108	72-121	04/12/05	Acceptable	
4-Bromofluorobenzene	105	66-122	04/12/05	Acceptable	

Comments:

Printed: 04/20/2005 12:26:50

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R4-SB04-4-5

Lab Code:

K2502497-012

Extraction Method: Analysis Method:

EPA 5035 8260B

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND U	8.6	1.3	1	04/12/05	04/12/05	KWG0506003	
Chloromethane	ND U	8.6	1.8	1	04/12/05	04/12/05	KWG0506003	
Vinyl Chloride	ND U	8.6	1.1	1	04/12/05	04/12/05	KWG0506003	
Bromomethane	ND U UJ	8.6	1.4	1	04/12/05	04/12/05	KWG0506003	
Chloroethane	ND U	8.6	1.4	1	04/12/05	04/12/05	KWG0506003	
Trichlorofluoromethane	ND U	8.6	1.3	1	04/12/05	04/12/05	KWG0506003	
Trichlorotrifluoroethane	ND U	8.6	1.3	1	04/12/05	04/12/05	KWG0506003	
Acetone	ND U	35	18	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethene	ND U	8.6	1.3	1	04/12/05	04/12/05	KWG0506003	
Methyl Acetate	ND U	8.6	1.3	1	04/12/05	04/12/05	KWG0506003	
Carbon Disulfide	ND U	8.6	2.6	1	04/12/05	04/12/05	KWG0506003	
Diisopropyl Ether	ND U	18	0.59	1	04/12/05	04/12/05	KWG0506003	
Methylene Chloride	ND U	18	4.3	1	04/12/05	04/12/05	KWG0506003	
Methyl tert-Butyl Ether	ND U	8.6	1.2	. 1 .	04/12/05	04/12/05	KWG0506003	
trans-1,2-Dichloroethene	ND U	8.6	1.3	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethane	ND U	8.6	1.4	1	04/12/05	04/12/05	KWG0506003	
2-Butanone (MEK)	ND U	35	21	1	04/12/05	04/12/05	KWG0506003	
cis-1,2-Dichloroethene	ND U	8.6	1.5	1	04/12/05	04/12/05	KWG0506003	
Chloroform	ND U	8.6	0.99	1	04/12/05	04/12/05	KWG0506003	
1,1,1-Trichloroethane (TCA)	ND U	8.6	0.99	1	04/12/05	04/12/05	KWG0506003	
Cyclohexane	LN U DN	8.6	1.2	1	04/12/05	04/12/05	KWG0506003	
Carbon Tetrachloride	ND U	8.6	1.1	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloroethane (EDC)	ND U	8.6	1.2	1	04/12/05	04/12/05	KWG0506003	
Benzene	ND U	8.6	1.4	1	04/12/05	04/12/05	KWG0506003	
Trichloroethene (TCE)	ND U	8.6	0.49	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloropropane	ND U	8.6	1.3	1	04/12/05	04/12/05	KWG0506003	
Bromodichloromethane	ND U	8.6	0.92	1	04/12/05	04/12/05	KWG0506003	
Methylcyclohexane	ND U UJ	8.6	1.3	1	04/12/05	04/12/05	KWG0506003	
2-Hexanone	ND U	35	11	1	04/12/05	04/12/05	KWG0506003	
cis-1,3-Dichloropropene	ND U	8.6	1.4	1	04/12/05	04/12/05	KWG0506003	
Toluene	ND U	8.6	1.5	1	04/12/05	04/12/05	KWG0506003	
trans-1,3-Dichloropropene	ND U	8.6	1.1	1	04/12/05	04/12/05	KWG0506003	
1,1,2-Trichloroethane	ND U	8.6	1.2	1	04/12/05	04/12/05	KWG0506003	

Comments:

Printed: 04/20/2005 12:26:52

Merged

u:\Stealth\Crystal.rpt\Form1m.rpt

Form 1A - Organic

SuperSet Reference:

Page 1 of 2

966

RR47238

Analytical Results

Client: Project:

Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name: Lab Code:

TO63-R4-SB04-4-5 K2502497-012

Extraction Method: Analysis Method:

EPA 5035 8260B

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND U	35	9.5	1	04/12/05	04/12/05	KWG0506003	
Tetrachloroethene (PCE)	ND U	8.6	0.54	1	04/12/05	04/12/05	KWG0506003	
Dibromochloromethane	ND U	8.6	1.1	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromoethane (EDB)	ND U	35	1.4	1	04/12/05	04/12/05	KWG0506003	
Chlorobenzene	ND U	8.6	1.3	1	04/12/05	04/12/05	KWG0506003	
Ethylbenzene	ND U	8.6	0.99	1	04/12/05	04/12/05	KWG0506003	
m,p-Xylenes	ND U	8.6	2.6	1	04/12/05	04/12/05	KWG0506003	
o-Xylene	ND U	8.6	1.2	1	04/12/05	04/12/05	KWG0506003	
Styrene	ND U	8.6	1.3	1	04/12/05	04/12/05	KWG0506003	
Bromoform	ND U	8.6	1.4	1	04/12/05	04/12/05	KWG0506003	
Isopropylbenzene	ND U	35	1.2	1	04/12/05	04/12/05	KWG0506003	
1,1,2,2-Tetrachloroethane	ND U	8.6	1.3	1	04/12/05	04/12/05	KWG0506003	
1,3-Dichlorobenzene	ND U	8.6	1.3	1	04/12/05	04/12/05	KWG0506003	
1,4-Dichlorobenzene	ND U	8.6	1.5	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichlorobenzene	ND U	8.6	1.2	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromo-3-chloropropane	ND U	35	1.5	1	04/12/05	04/12/05	KWG0506003	
1,2,4-Trichlorobenzene	ND U	35	1.4	1	04/12/05	04/12/05	KWG0506003	
Naphthalene	ND U	35	1.6	1	04/12/05	04/12/05	KWG0506003	
Bromochloromethane	ND U	8.6	1.7	1	04/12/05	04/12/05	KWG0506003	
1,2,3-Trichlorobenzene	ND U	35	1.6	1	04/12/05	04/12/05	KWG0506003	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	107	70-119	04/12/05	Acceptable
Toluene-d8	106	72-121	04/12/05	Acceptable
4-Bromofluorobenzene	103	66-122	04/12/05	Acceptable

Comments:

Printed: 04/20/2005 12:26:52

 $u: \label{lem:condition} u: \label{lem:condition} u: \label{lem:condition} Im.rpt$

Merged

Form 1A - Organic

SuperSet Reference: RR47238

2 of 2 Page

967

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date

Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Dilution

Date

Sample Name:

TO63-R5-SB04-0-0.5

Lab Code:

K2502497-013

Extra Analy 5035

Units: ug/Kg Basis: Dry

Level: Low

Extraction

ection	Method:	EPA 503
vsis M	lethod:	8260B

				Dilution	Date	Dutt	MARINE MECHOIL	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND U	4.5	0.79	1	04/12/05	04/12/05	KWG0506003	
Chloromethane	ND U	4.5	1.2	1	04/12/05	04/12/05	KWG0506003	
Vinyl Chloride	ND U	4.5	0.70	1	04/12/05	04/12/05	KWG0506003	
Bromomethane	LN U DN	4.5	0.91	1	04/12/05	04/12/05	KWG0506003	
Chloroethane	ND U	4.5	0.88	1	04/12/05	04/12/05	KWG0506003	
Trichlorofluoromethane	ND U	4.5	0.83	1	04/12/05	04/12/05	KWG0506003	
Trichlorotrifluoroethane	ND U	4.5	0.84	1	04/12/05	04/12/05	KWG0506003	
Acetone	ND U	18	12	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethene	ND U	4.5	0.80	1	04/12/05	04/12/05	KWG0506003	
Methyl Acetate	ND U	4.5	0.84	1	04/12/05	04/12/05	KWG0506003	
Carbon Disulfide	ND U	4.5	1.7	1	04/12/05	04/12/05	KWG0506003	
Diisopropyl Ether	ND U	8.9	0.39	1	04/12/05	04/12/05	KWG0506003	
Methylene Chloride	ND U	8.9	2.9	1	04/12/05	04/12/05	KWG0506003	
Methyl tert-Butyl Ether	ND U	4.5	0.74	1	04/12/05	04/12/05	KWG0506003	
trans-1,2-Dichloroethene	ND U	4.5	0.83	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethane	ND U	4.5	0.88	1	04/12/05	04/12/05	KWG0506003	
2-Butanone (MEK)	ND U	18	14	1	04/12/05	04/12/05	KWG0506003	
cis-1,2-Dichloroethene	ND U	4.5	0.94	1	04/12/05	04/12/05	KWG0506003	
Chloroform	ND U	4.5	0.65	1	04/12/05	04/12/05	KWG0506003	
1,1,1-Trichloroethane (TCA)	ND U	4.5	0.65	1	04/12/05	04/12/05	KWG0506003	
Cyclohexane	ND U NJ	4.5	0.76	1	04/12/05	04/12/05	KWG0506003	
Carbon Tetrachloride	ND U	4.5	0.68	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloroethane (EDC)	ND U	4.5	0.76	1	04/12/05	04/12/05	KWG0506003	
Benzene	ND U	4.5	0.89	1	04/12/05	04/12/05	KWG0506003	
Trichloroethene (TCE)	ND U	4.5	0.32	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloropropane	ND U	4.5	0.82	1	04/12/05	04/12/05	KWG0506003	
Bromodichloromethane	ND U	4.5	0.60	1	04/12/05	04/12/05	KWG0506003	
Methylcyclohexane	LN U DN	4.5	0.80	1	04/12/05	04/12/05	KWG0506003	
2-Hexanone	ND U	18	6.9	1	04/12/05	04/12/05	KWG0506003	
cis-1,3-Dichloropropene	ND U	4.5	0.86	1	04/12/05	04/12/05	KWG0506003	
Toluene	ND U	4.5	0.95	1	04/12/05	04/12/05	KWG0506003	
trans-1,3-Dichloropropene	ND U	4.5	0.68	1000	04/12/05	04/12/05	KWG0506003	
1,1,2-Trichloroethane	ND U	4.5	0.78	1004	04/12/05	04/12/05	KWG0506003	

Comments:

Printed: 04/20/2005 12:26:54 u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference:

1 of 2 Page

RR47238

Analytical Results

Client:

Battelle Memorial Institute Novato Ballfields/G486063

Project: Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005 Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R5-SB04-0-0.5

Lab Code:

K2502497-013

Extraction Method: Analysis Method:

EPA 5035 8260B

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND U	18	6.2	1	04/12/05	04/12/05	KWG0506003	
Tetrachloroethene (PCE)	ND U	4.5	0.35	1	04/12/05	04/12/05	KWG0506003	
Dibromochloromethane	ND U	4.5	0.68	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromoethane (EDB)	ND U	18	0.89	1	04/12/05	04/12/05	KWG0506003	
Chlorobenzene	ND U	4.5	0.79	1	04/12/05	04/12/05	KWG0506003	
Ethylbenzene	ND U	4.5	0.65	1 .	04/12/05	04/12/05	KWG0506003	
m,p-Xylenes	ND U	4.5	1.7	1	04/12/05	04/12/05	KWG0506003	
o-Xylene	ND U	4.5	0.78	1	04/12/05	04/12/05	KWG0506003	
Styrene	ND U	4.5	0.83	1	04/12/05	04/12/05	KWG0506003	
Bromoform	ND U	4.5	0.87	1	04/12/05	04/12/05	KWG0506003	
Isopropylbenzene	ND U	18	0.77	1	04/12/05	04/12/05	KWG0506003	
1,1,2,2-Tetrachloroethane	ND U	4.5	0.84	1	04/12/05	04/12/05	KWG0506003	
1,3-Dichlorobenzene	ND U	4.5	0.80	1	04/12/05	04/12/05	KWG0506003	
1,4-Dichlorobenzene	ND U	4.5	0.93	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichlorobenzene	ND U	4.5	0.74	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromo-3-chloropropane	ND U	18	0.96	1	04/12/05	04/12/05	KWG0506003	
1,2,4-Trichlorobenzene	ND U	18	0.87	1	04/12/05	04/12/05	KWG0506003	
Naphthalene	ND U	18	1.1	1	04/12/05	04/12/05	KWG0506003	
Bromochloromethane	ND U	4.5	1.2	1	04/12/05	04/12/05	KWG0506003	
1,2,3-Trichlorobenzene	ND U	18	1.1	1	04/12/05	04/12/05	KWG0506003	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	105	70-119	04/12/05	Acceptable	
Toluene-d8	108	72-121	04/12/05	Acceptable	
4-Bromofluorobenzene	103	66-122	04/12/05	Acceptable	

Comments:

Printed: 04/20/2005 12:26:54

Merged $u:\Stealth\Crystal.rpt\Form\Im.rpt$

Form 1A - Organic

2 of 2 Page

SuperSet Reference: RR47238

Analytical Results

Client:

Battelle Memorial Institute Novato Ballfields/G486063

Project: Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R5-SB04-5-6

Lab Code:

K2502497-014

Extraction Method: Analysis Method:

8260B

EPA 5035

Units: ug/Kg Basis: Dry

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND	U	8.3	1.2	1	04/12/05	04/12/05	KWG0506003	
Chloromethane	ND '	U	8.3	1.7	1	04/12/05	04/12/05	KWG0506003	
Vinyl Chloride	ND 1	U	8.3	1.1	1	04/12/05	04/12/05	KWG0506003	
Bromomethane		UUJ	8.3	1.4	1	04/12/05	04/12/05	KWG0506003	
Chloroethane		U	8.3	1.4	1	04/12/05	04/12/05	KWG0506003	
Trichlorofluoromethane	ND 1	U	8.3	1.3	1	04/12/05	04/12/05	KWG0506003	
Trichlorotrifluoroethane	ND 1	U	8.3	1.3	1	04/12/05	04/12/05	KWG0506003	
Acetone	23 .		33	18	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethene	ND 1	U	8.3	1.3	1	04/12/05	04/12/05	KWG0506003	
Methyl Acetate	ND 1		8.3	1.3	1	04/12/05	04/12/05	KWG0506003	
Carbon Disulfide	ND 1	U	8.3	2.6	1	04/12/05	04/12/05	KWG0506003	
Diisopropyl Ether	ND I	U	17	0.59	1	04/12/05	04/12/05	KWG0506003	
Methylene Chloride	ND I		17	4.3	1	04/12/05	04/12/05	KWG0506003	
Methyl tert-Butyl Ether	ND I		8.3	1.2	1	04/12/05	04/12/05	KWG0506003	
trans-1,2-Dichloroethene	ND I	IJ	8.3	1.3	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethane	ND I		8.3	1.4	1	04/12/05	04/12/05	KWG0506003	
2-Butanone (MEK)	ND I	J	33	21	1	04/12/05	04/12/05	KWG0506003	
cis-1,2-Dichloroethene	ND U	J	8.3	1.5	1	04/12/05	04/12/05	KWG0506003	
Chloroform	ND U		8.3	0.98	1	04/12/05	04/12/05	KWG0506003	
1,1,1-Trichloroethane (TCA)	ND U	J	8.3	0.98	1	04/12/05	04/12/05	KWG0506003	
Cyclohexane	ND U	tu u	8.3	1.2	1	04/12/05	04/12/05	KWG0506003	
Carbon Tetrachloride	ND U	J	8.3	1.1	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloroethane (EDC)	ND (J	8.3	1.2	1	04/12/05	04/12/05	KWG0506003	
Benzene	ND U	J	8.3	1.4	1	04/12/05	04/12/05	KWG0506003	
Trichloroethene (TCE)	ND (J	8.3	0.48	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloropropane	ND U	J	8.3	1.3	1	04/12/05	04/12/05	KWG0506003	
Bromodichloromethane	ND U	J	8.3	0.91	1	04/12/05	04/12/05	KWG0506003	
Methylcyclohexane	ND U	v	8.3	1.3	1	04/12/05	04/12/05	KWG0506003	
2-Hexanone	ND U	J	33	11	1	04/12/05	04/12/05	KWG0506003	
cis-1,3-Dichloropropene	ND U	J	8.3	1.3	1	04/12/05	04/12/05	KWG0506003	
Toluene	ND U		8.3	1.5	1	04/12/05	04/12/05	KWG0506003	
trans-1,3-Dichloropropene	ND U		8.3	1.1	1	04/12/05	04/12/05	KWG0506003	
1,1,2-Trichloroethane	ND U	J	8.3	1.2	1	04/12/05	04/12/05	KWG0506003	

Comments:

Page 1 of 2

970

Printed: 04/20/2005 12:26:56

Analytical Results

Client:

Battelle Memorial Institute Novato Ballfields/G486063

Project: Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R5-SB04-5-6

Lab Code:

K2502497-014

Extraction Method:

EPA 5035

Units: ug/Kg Basis: Dry

Level: Low

8260B **Analysis Method:**

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND	U	33	9.5	1	04/12/05	04/12/05	KWG0506003	
Tetrachloroethene (PCE)	ND	U	8.3	0.53	1	04/12/05	04/12/05	KWG0506003	
Dibromochloromethane	ND	U	8.3	1.1	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromoethane (EDB)	ND	U	33	1.4	1	04/12/05	04/12/05	KWG0506003	
Chlorobenzene	ND	U	8.3	1.2	1	04/12/05	04/12/05	KWG0506003	
Ethylbenzene	ND	U	8.3	0.98	1	04/12/05	04/12/05	KWG0506003	
m,p-Xylenes	ND	U	8.3	2.6	1	04/12/05	04/12/05	KWG0506003	
o-Xylene	ND	U	8.3	1.2	1	04/12/05	04/12/05	KWG0506003	
Styrene	ND	U	8.3	1.3	1	04/12/05	04/12/05	KWG0506003	
Bromoform	ND	U	8.3	1.4	1	04/12/05	04/12/05	KWG0506003	
Isopropylbenzene	ND	U	33	1.2	1	04/12/05	04/12/05	KWG0506003	
1,1,2,2-Tetrachloroethane	ND	U	8.3	1.3	1	04/12/05	04/12/05	KWG0506003	
1,3-Dichlorobenzenc	ND	U	8.3	1.3	1	04/12/05	04/12/05	KWG0506003	
1,4-Dichlorobenzene	ND	U	8.3	1.5	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichlorobenzene	ND	U	8.3	1.2	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromo-3-chloropropane	ND	U	33	1.5	1	04/12/05	04/12/05	KWG0506003	
1,2,4-Trichlorobenzene	ND	U	33	1.4	1	04/12/05	04/12/05	KWG0506003	
Naphthalene	ND	U	33	1.6	11	04/12/05	04/12/05	KWG0506003	
Bromochloromethane	ND	U	8.3	1.7	1	04/12/05	04/12/05	KWG0506003	
1,2,3-Trichlorobenzene	ND	U	33	1.6	1	04/12/05	04/12/05	KWG0506003	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	107	70-119	04/12/05	Acceptable
Toluene-d8	105	72-121	04/12/05	Acceptable
4-Bromofluorobenzene	105	66-122	04/12/05	Acceptable

Comments:

Analytical Results

Client: Project:

Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R5-SB02-0-0.5

Lab Code:

K2502497-015

Extraction Method:

EPA 5035

Units: ug/Kg Basis: Dry

1 of 2

Level: Low

DALI ACLI	on Michiga.	LITIO
Analysis	Method:	8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND U	4.8	0.80	1	04/12/05	04/12/05	KWG0506003	11010
Chloromethane	ND U	4.8	1.2	1	04/12/05	04/12/05	KWG0506003	
Vinyl Chloride	ND U	4.8	0.71	1	04/12/05	04/12/05	KWG0506003	
Bromomethane	ND U UJ	4.8	0.91	1	04/12/05	04/12/05	KWG0506003	······
Chloroethane	ND U	4.8	0.89	1	04/12/05	04/12/05	KWG0506003	
Trichlorofluoromethane	ND U	4.8	0.83	1	04/12/05	04/12/05	KWG0506003	
Trichlorotrifluoroethanc	ND U	4.8	0.85	1	04/12/05	04/12/05	KWG0506003	***************************************
Acetone	ND U	19	12	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethene	ND U	4.8	0.81	1	04/12/05	04/12/05	KWG0506003	
Methyl Acetate	ND U	4.8	0.85	1	04/12/05	04/12/05	KWG0506003	
Carbon Disulfide	ND U	4.8	1.8	1	04/12/05	04/12/05	KWG0506003	
Diisopropyl Ether	ND U	9.5	0.39	1	04/12/05	04/12/05	KWG0506003	
Methylene Chloride	ND U	9.5	2.9	1	04/12/05	04/12/05	KWG0506003	*****
Methyl tert-Butyl Ether	ND U	4.8	0.74	1	04/12/05	04/12/05	KWG0506003	
trans-1,2-Dichloroethene	ND U	4.8	0.83	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethane	ND U	4.8	0.89	1	04/12/05	04/12/05	KWG0506003	
2-Butanone (MEK)	ND U	19	14	1	04/12/05	04/12/05	KWG0506003	
cis-1,2-Dichloroethene	ND U	4.8	0.95	1	04/12/05	04/12/05	KWG0506003	
Chloroform	ND U	4.8	0.65	1	04/12/05	04/12/05	KWG0506003	
1,1,1-Trichloroethane (TCA)	ND U	4.8	0.65	1	04/12/05	04/12/05	KWG0506003	
Cyclohexane	ND U UJ	4.8	0.77	1	04/12/05	04/12/05	KWG0506003	
Carbon Tetrachloride	ND U	4.8	0.69	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloroethane (EDC)	ND U	4.8	0.77	1	04/12/05	04/12/05	KWG0506003	
Benzene	ND U	4.8	0.90	1	04/12/05	04/12/05	KWG0506003	
Trichloroethene (TCE)	ND U	4.8	0.32	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloropropane	ND U	4.8	0.82	1	04/12/05	04/12/05	KWG0506003	
Bromodichloromethane	ND U	4.8	0.61	1	04/12/05	04/12/05	KWG0506003	
Methylcyclohexane	ND U U.J	4.8	0.81	1	04/12/05	04/12/05	KWG0506003	
2-Hexanone	ND U	19	7.0	1	04/12/05	04/12/05	KWG0506003	
cis-1,3-Dichloropropene	ND U	4.8	0.87	1	04/12/05	04/12/05	KWG0506003	
Toluene	ND U	4.8	0.96	1	04/12/05	04/12/05	KWG0506003	
trans-1,3-Dichloropropene	ND U	4.8	0.69	1	04/12/05	04/12/05	KWG0506003	
1,1,2-Trichloroethane	ND U	4.8	0.79	1	04/12/05	04/12/05	KWG0506003	

Comments:

Form 1A - Organic Page

SuperSet Reference:

RR47238

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005 Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R5-SB02-0-0.5

Lab Code:

K2502497-015

Extraction Method: Analysis Method:

EPA 5035 8260B

Basis: Dry

Level: Low

Units: ug/Kg

	Powell O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name	Result Q	***************************************		ractui		<u>`</u>	KWG0506003	
4-Methyl-2-pentanone (MIBK)	ND U	19	6.3	1	04/12/05	04/12/05	KWG0506003	
Tetrachloroethene (PCE)	ND U	4.8	0.36	1	04/12/05	04/12/05		
Dibromochloromethane	ND U	4.8	0.69	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromoethane (EDB)	ND U	19	0.90	1	04/12/05	04/12/05	KWG0506003	
Chlorobenzene	ND U	4.8	0.80	1	04/12/05	04/12/05	KWG0506003	
Ethylbenzene	ND U	4.8	0.65	1	04/12/05	04/12/05	KWG0506003	
m,p-Xylenes	ND U	4.8	1.8	1	04/12/05	04/12/05	KWG0506003	
o-Xylene	ND U	4.8	0.79	1	04/12/05	04/12/05	KWG0506003	
Styrene	ND U	4.8	0.83	1	04/12/05	04/12/05	KWG0506003	
Bromoform	ND U	4.8	0.88	1	04/12/05	04/12/05	KWG0506003	
Isopropylbenzene	ND U	19	0.78	1	04/12/05	04/12/05	KWG0506003	
1,1,2,2-Tetrachloroethane	ND U	4.8	0.85	1	04/12/05	04/12/05	KWG0506003	
1,3-Dichlorobenzene	ND U	4.8	0.81	1	04/12/05	04/12/05	KWG0506003	
1,4-Dichlorobenzene	ND U	4.8	0.94	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichlorobenzene	ND U	4.8	0.74	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromo-3-chloropropane	ND U	19	0.97	1	04/12/05	04/12/05	KWG0506003	
1,2,4-Trichlorobenzene	ND U	19	0.88	1	04/12/05	04/12/05	KWG0506003	
Naphthalene	ND U	19	1.1	1	04/12/05	04/12/05	KWG0506003	
Bromochloromethane	ND U	4.8	1.2	1	04/12/05	04/12/05	KWG0506003	
1,2,3-Trichlorobenzene	ND U	19	1.1	1	04/12/05	04/12/05	KWG0506003	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	105	70-119	04/12/05	Acceptable
Toluene-d8	110	72-121	04/12/05	Acceptable
4-Bromofluorobenzene	110	66-122	04/12/05	Acceptable

Comments:

Printed: 04/20/2005 12:26:59

u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

Page 2 of 2

SuperSet Reference: RR47238

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name: Lab Code:

TO63-R5-SB02-3-4 K2502497-016

Extraction Method: Analysis Method:

EPA 5035 8260B

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND U	10	1.4	1	04/12/05	04/12/05	KWG0506003	
Chloromethane	ND U	10	2.0	1	04/12/05	04/12/05	KWG0506003	
Vinyl Chloride	ND U	10	1.3	1	04/12/05	04/12/05	KWG0506003	
Bromomethane	LN U DN	10	1.6	1	04/12/05	04/12/05	KWG0506003	
Chloroethane	ND U	10	1.6	1	04/12/05	04/12/05	KWG0506003	
Trichlorofluoromethane	ND U	10	1.5	1	04/12/05	04/12/05	KWG0506003	
Trichlorotrifluoroethane	ND U	10	1.5	1	04/12/05	04/12/05	KWG0506003	
Acetone	ND U	40	20	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethene	ND U	10	1.5	1	04/12/05	04/12/05	KWG0506003	
Methyl Acetate	ND U	10	1.5	1	04/12/05	04/12/05	KWG0506003	
Carbon Disulfide	ND U	10	3.0	1	04/12/05	04/12/05	KWG0506003	
Diisopropyl Ether	ND U	20	0.68	1	04/12/05	04/12/05	KWG0506003	
Methylene Chloride	ND U	20	5.0	1	04/12/05	04/12/05	KWG0506003	
Methyl tert-Butyl Ether	ND U	10	1.3	1	04/12/05	04/12/05	KWG0506003	
trans-1,2-Dichloroethene	ND U	10	1.5	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethane	ND U	10	1.6	1	04/12/05	04/12/05	KWG0506003	
2-Butanone (MEK)	ND U	40	24	1	04/12/05	04/12/05	KWG0506003	
cis-1,2-Dichloroethene	ND U	10	1.7	1	04/12/05	04/12/05	KWG0506003	
Chloroform	ND U	10	1.2	1	04/12/05	04/12/05	KWG0506003	
1,1,1-Trichloroethane (TCA)	ND U	10	1.2	1	04/12/05	04/12/05	KWG0506003	
Cyclohexane	ND U W	10	1.4	1	04/12/05	04/12/05	KWG0506003	
Carbon Tetrachloride	ND U	10	1.2	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloroethane (EDC)	ND U	10	1.4	1	04/12/05	04/12/05	KWG0506003	
Benzene	ND U	10	1.6	1	04/12/05	04/12/05	KWG0506003	
Trichloroethene (TCE)	ND U	10	0.56	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloropropane	ND U	10	1.5	1	04/12/05	04/12/05	KWG0506003	
Bromodichloromethane	ND U	10	1.1	1	04/12/05	04/12/05	KWG0506003	
Methylcyclohexanc	LN U DN	10	1.5	1	04/12/05	04/12/05	KWG0506003	
2-Hexanone	ND U	40	13	1	04/12/05	04/12/05	KWG0506003	
cis-1,3-Dichloropropene	ND U	10	1.6	1	04/12/05	04/12/05	KWG0506003	
Toluene	ND U	10	1.7	1	04/12/05	04/12/05	KWG0506003	
trans-1,3-Dichloropropene	ND U	10	1.2	1	04/12/05	04/12/05	KWG0506003	
1,1,2-Trichloroethane	ND U	10	1.4	1	04/12/05	04/12/05	KWG0506003	

Comments:

Printed: 04/20/2005 12:27:01

Merged

Form 1A - Organic

Page 1 of 2

SuperSet Reference: RR47238

Analytical Results

Battelle Memorial Institute Client: Novato Ballfields/G486063 Project:

Soil Sample Matrix:

Service Request: K2502497 Date Collected: 04/06/2005 Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name: K2502497-016 Lab Code:

Extraction Method: 8260B **Analysis Method:**

Units: ug/Kg TO63-R5-SB02-3-4 Basis: Dry Level: Low EPA 5035

Extraction Dilution Date Date Note Lot Analyzed Result Q MRL MDL **Factor** Extracted **Analyte Name** KWG0506003 04/12/05 04/12/05 40 1 11 4-Methyl-2-pentanone (MIBK) ND U KWG0506003 04/12/05 04/12/05 1 10 0.62 Tetrachloroethene (PCE) ND U 04/12/05 04/12/05 KWG0506003 1 10 1.2 ND U Dibromochloromethane KWG0506003 40 1.6 1 04/12/05 04/12/05 ND U 1.2-Dibromoethane (EDB) KWG0506003 04/12/05 10 1.4 1 04/12/05 ND U Chlorobenzene 04/12/05 KWG0506003 1 04/12/05 1.2 ND U 10 Ethylbenzene KWG0506003 04/12/05 04/12/05 ND U 10 3.0 1 m,p-Xylenes KWG0506003 04/12/05 04/12/05 ND U 10 1.4 1 o-Xylene KWG0506003 04/12/05 04/12/05 10 1.5 1 ND U Styrene KWG0506003 04/12/05 1 04/12/05 10 1.6 ND U Bromoform KWG0506003 04/12/05 1 04/12/05 ND U 40 1.4 Isopropylbenzene KWG0506003 04/12/05 04/12/05 10 1.5 1 ND U 1,1,2,2-Tetrachloroethane KWG0506003 1.5 1 04/12/05 04/12/05 10 ND U 1.3-Dichlorobenzene KWG0506003 04/12/05 1.7 1 04/12/05 ND U 10 1.4-Dichlorobenzene KWG0506003 10 04/12/05 04/12/05 1.3 1 ND U 1,2-Dichlorobenzene KWG0506003 1 04/12/05 04/12/05 40 1.7 1,2-Dibromo-3-chloropropane ND U KWG0506003 04/12/05 04/12/05 ND U 40 1.6 1 1,2,4-Trichlorobenzene KWG0506003 04/12/05 04/12/05 40 1.8 1 ND U Naphthalene KWG0506003 04/12/05 04/12/05 ND U 10 2.0 1 Bromochloromethane KWG0506003 04/12/05 04/12/05 40 1.8 1 ND U 1,2,3-Trichlorobenzene

Surrogate Name	%Rcc	Control Limits	Date Analyzed	Note
Dibromofluoromethane	106	70-119	04/12/05	Acceptable
Toluene-d8	109	72-121	04/12/05	Acceptable
4-Bromofluorobenzene	107	66-122	04/12/05	Acceptable

Comments:

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497 Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R5-SB01-0.0.5

Lab Code:

K2502497-017

Extraction Method: Analysis Method:

EPA 5035 8260B

Units: ug/Kg Basis: Dry

Level: Low

			3 K W Y	Dilution	Date	Date	Extraction Lot	Note
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed		Note
Dichlorodifluoromethane	ND U	6.2	0.87	1	04/12/05	04/12/05	KWG0506003 KWG0506003	
Chloromethane	ND U	6.2	1.3	1	04/12/05	04/12/05	KWG0506003	
Vinyl Chloride	ND U	6.2	0.77	1	04/12/05	04/12/05		
Bromomethane	LN n dn	6.2	1.0	1	04/12/05	04/12/05	KWG0506003	
Chloroethane	ND U	6.2	0.97	1	04/12/05	04/12/05	KWG0506003	
Trichlorofluoromethane	ND U	6.2	0.91	1	04/12/05	04/12/05	KWG0506003	
Trichlorotrifluoroethane	ND U	6.2	0.92	1	04/12/05	04/12/05	KWG0506003	
Acetone	44	25	13	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethene	ND U	6.2	0.88	1	04/12/05	04/12/05	KWG0506003	
Methyl Acetate	ND U	6.2	0.92	1	04/12/05	04/12/05	KWG0506003	
Carbon Disulfide	ND U	6.2	1.9	1	04/12/05	04/12/05	KWG0506003	
Diisopropyl Ether	ND U	13	0.43	1	04/12/05	04/12/05	KWG0506003	
Methylene Chloride	ND U	13	3.1	1	04/12/05	04/12/05	KWG0506003	
Methyl tert-Butyl Ether	ND U	6.2	0.81	1	04/12/05	04/12/05	KWG0506003	
trans-1,2-Dichloroethene	ND U	6.2	0.91	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethane	ND U	6.2	0.97	1	04/12/05	04/12/05	KWG0506003	
2-Butanone (MEK)	ND U	25	15	1	04/12/05	04/12/05	KWG0506003	
cis-1,2-Dichloroethene	ND U	6.2	1.1	1	04/12/05	04/12/05	KWG0506003	
Chloroform	ND U	6.2	0.71	1	04/12/05	04/12/05	KWG0506003	
1,1,1-Trichloroethane (TCA)	ND U	6.2	0.71	1	04/12/05	04/12/05	KWG0506003	
Cyclohexane	LN u dn	6.2	0.83	1	04/12/05	04/12/05	KWG0506003	
Carbon Tetrachloride	ND U	6.2	0.75	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloroethane (EDC)	ND U	6.2	0.83	1	04/12/05	04/12/05	KWG0506003	
Benzene	ND U	6.2	0.98	1	04/12/05	04/12/05	KWG0506003	
Trichloroethene (TCE)	ND U	6.2	0.35	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloropropane	ND U	6.2	0.90	1	04/12/05	04/12/05	KWG0506003	. ,
Bromodichloromethane	ND U	6.2	0.66	1	04/12/05	04/12/05	KWG0506003	
Methylcyclohexane	ND U UJ	6.2	0.88	1	04/12/05	04/12/05	KWG0506003	
2-Hexanone	ND U	25	7.6	1	04/12/05	04/12/05	KWG0506003	
cis-1,3-Dichloropropene	ND U	6.2	0.95	1	04/12/05	04/12/05	KWG0506003	
Toluene	ND U	6.2	1.1	1	04/12/05	04/12/05	KWG0506003	
trans-1,3-Dichloropropene	ND U	6.2	0.75	1	04/12/05	04/12/05	KWG0506003	
1,1,2-Trichloroethane	ND U	6.2	0.86	1	04/12/05	04/12/05	KWG0506003	

Comments:

Printed: 04/20/2005 12:27:03 u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference:

Page 1 of 2

976

Analytical Results

Client:

Battelle Memorial Institute

Project:

Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497 Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R5-SB01-0.0.5

Lab Code:

K2502497-017

Extraction Method:

EPA 5035

Analysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

A. N. W.	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name		25	6.9	1	04/12/05	04/12/05	KWG0506003	
4-Methyl-2-pentanone (MIBK)	ND U		0.39	1	04/12/05	04/12/05	KWG0506003	
Tetrachloroethene (PCE)	ND U	6.2		1	04/12/05	04/12/05	KWG0506003	
Dibromochloromethane	ND U	6.2	0.75				KWG0506003	
1,2-Dibromoethane (EDB)	ND U	25	0.98	1	04/12/05	04/12/05		
Chlorobenzene	ND U	6.2	0.87	1	04/12/05	04/12/05	KWG0506003	
Ethylbenzene	ND U	6.2	0.71	1	04/12/05	04/12/05	KWG0506003	
	2.0 J	6.2	1.9	1	04/12/05	04/12/05	KWG0506003	
m,p-Xylenes	1.1 J	6.2	0.86	1	04/12/05	04/12/05	KWG0506003	
o-Xylene	ND U	6.2	0.91	1	04/12/05	04/12/05	KWG0506003	
Styrene			0.96	1	04/12/05	04/12/05	KWG0506003	
Bromoform	ND U	6.2	0.90	1	04/12/05	04/12/05	KWG0506003	
Isopropylbenzene	ND U	25		1	04/12/05	04/12/05	KWG0506003	
1,1,2,2-Tetrachloroethane	ND U	6.2	0.92	1			KWG0506003	
1,3-Dichlorobenzene	ND U	6.2	0.88	1	04/12/05	04/12/05		
1,4-Dichlorobenzene	ND U	6.2	1.1	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichlorobenzene	ND U	6.2	0.81	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromo-3-chloropropane	ND U	25	1.1	1	04/12/05	04/12/05	KWG0506003	
	ND U	25	0.96	1	04/12/05	04/12/05	KWG0506003	
1,2,4-Trichlorobenzene	ND U	25	1.2	1	04/12/05	04/12/05	KWG0506003	
Naphthalene			1.3	1	04/12/05	04/12/05	KWG0506003	
Bromochloromethane	ND U	6.2		1	04/12/05	04/12/05	KWG0506003	
1,2,3-Trichlorobenzene	ND U	25	1.2	1	04/12/03	04/12/03		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	107	70-119	04/12/05	Acceptable
	108	72-121	04/12/05	Acceptable
	110	66-122	04/12/05	Acceptable

Comments:

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R5-SB03-0.0.5

Lab Code:

K2502497-018

Extraction Method: EPA 5035 **Analysis Method:**

8260B

Units: ug/Kg Basis: Dry

Level: Low

Nanlyte Name					Dilution	Date	Date	Extraction	
Dichlorodifluoromethane	Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Chloromethane ND U		ND U	4.5	0.77	1	04/12/05	04/12/05		
Vinyl Chloride ND U 4.5 0.68 1 04/12/05 04/12/05 kWG0506003 Bromomethane ND U 4.5 0.88 1 04/12/05 04/12/05 kWG0506003 Chloroethane ND U 4.5 0.88 1 04/12/05 04/12/05 kWG0506003 Trichlorotrifluoroethane ND U 4.5 0.81 1 04/12/05 04/12/05 kWG0506003 Acetone ND U 4.5 0.81 1 04/12/05 04/12/05 kWG0506003 Methyl Acetate ND U 4.5 0.78 1 04/12/05 04/12/05 kWG0506003 Methyl Acetate ND U 4.5 0.81 1 04/12/05 04/12/05 kWG0506003 Methyl Acetate ND U 4.5 0.81 1 04/12/05 04/12/05 kWG0506003 Diisopropyl Ether ND U 8.9 2.8 1 04/12/05 04/12/		ND U	4.5		1	04/12/05			
Bromomethane		ND U	4.5	0.68	1	04/12/05	04/12/05	KWG0506003	
Chloroethane ND U 4.5 b. 0.85 b. 0.80 b. 0.4/12/05 b. WG0506003 CMG0506003 b. 0.80 b. 0.80 b. 0.80 b. 0.4/12/05 b. WG0506003 Trichloroftuoromethane ND U 4.5 b. 0.81 l. 0.4/12/05 b. 0.4/12/05 b. WG0506003 WG0506003 b. 0.81 l. 0.4/12/05 b. 0.4/12/05 b. WG0506003 Acetone ND U 4.5 b. 0.81 l. 0.4/12/05 b. 0.4/12/05 b. WG0506003 WG0506003 b. 0.4/12/05 b. WG0506003 Mcthyl Acetate ND U 4.5 b. 0.81 l. 0.4/12/05 b. 0.4/12/05 b. WG0506003 WG0506003 b. 0.4/12/05 b. WG0506003 Mcthyl Acetate ND U 4.5 b. 0.81 l. 0.4/12/05 b. 0.4/12/05 b. WG0506003 WG0506003 b. 0.4/12/05 b. WG0506003 Diisopropyl Ether ND U 4.5 b. 0.81 l. 0.4/12/05 b. 0.4/12/05 b. WG0506003 WG0506003 b. 0.4/12/05 b. WG0506003 Methylene Chloride ND U 8.9 b. 2.8 l. 0.4/12/05 b. 0.4/12/05 b. WG0506003 WG0506003 b. 0.4/12/05 b. WG0506003 Methyl tert-Butyl Ether ND U 4.5 b. 0.80 l. 0.4/12/05 b. 0.4/12/05 b. WG0506003 1,1-Dichloroethene ND U 4.5 b. 0.85 l. 0.4/12/05 b. 0.4/12/05 b. WG0506003 1,1-Dichloroethane ND U 4.5 b. 0.85 l. 0.4/12/05 b. 0.4/12/05 b. WG0506003 2-Butanone (MEK) ND U 4.5 b. 0.63 l. 0.4/12/05 b. 0.4/12/05 b. WG0506003 Chloroform ND U <td></td> <td>LN U DN</td> <td>4.5</td> <td>0.88</td> <td>1</td> <td>04/12/05</td> <td></td> <td></td> <td></td>		LN U DN	4.5	0.88	1	04/12/05			
Trichlorofiluoromethane ND U 4.5 0.80 1 04/12/05 04/12/05 KWG0506003 Trichlorotrifluoroethane ND U 4.5 0.81 1 04/12/05 04/12/05 KWG0506003 Acetone ND U 4.5 0.78 1 04/12/05 04/12/05 KWG0506003 J.1-Dichloroethene ND U 4.5 0.78 1 04/12/05 04/12/05 KWG0506003 Methyl Acetate ND U 4.5 1.7 1 04/12/05 04/12/05 KWG0506003 Diisopropyl Ether ND U 8.9 0.37 1 04/12/05 04/12/05 KWG0506003 Methylene Chloride ND U 8.9 2.8 1 04/12/05 04/12/05 KWG0506003 Methyler-Butyl Ether ND U 4.5 0.80 1 04/12/05 04/12/05 KWG0506003 trans-1,2-Dichloroethane ND U 4.5 0.80 1 04/12/05 04/12/05 KWG0506003 1,1-I-Tichloroethane ND U		ND U	4.5		1				
Acetone		ND U	4.5	0.80	1	04/12/05	04/12/05	KWG0506003	
Acetone	Trichlorotrifluoroethane	ND U	4.5	0.81	1	04/12/05	04/12/05		
Methyl Acetate		ND U	18	11	1	04/12/05			
Methyl Acetate ND U 4.5 0.81 1 04/12/05 04/12/05 KWG0506003 Carbon Disulfide ND U 4.5 1.7 1 04/12/05 04/12/05 KWG0506003 Disopropyl Ether ND U 8.9 0.37 1 04/12/05 04/12/05 KWG0506003 Methylene Chloride ND U 8.9 2.8 1 04/12/05 04/12/05 KWG0506003 Methyleter-Butyl Ether ND U 4.5 0.71 1 04/12/05 04/12/05 KWG0506003 Methyl tert-Butyl Ether ND U 4.5 0.80 1 04/12/05 04/12/05 KWG0506003 Itrans-1,2-Dichloroethene ND U 4.5 0.85 1 04/12/05 04/12/05 KWG0506003 2-Butanone (MEK) ND U 4.5 0.85 1 04/12/05 04/12/05 KWG0506003 cis-1,2-Dichloroethane ND U 4.5 0.63 1 04/12/05 04/12/05 KWG0506003 Cyclohexane ND U	1,1-Dichloroethene	ND U	4.5	0.78	1	04/12/05	04/12/05	KWG0506003	
Carbon Disulfide ND U 4.5 1.7 1 04/12/05 64/12/05 KWG6506003 Diisopropyl Ether ND U 8.9 0.37 1 04/12/05 04/12/05 KWG0506003 Methylene Chloride ND U 4.5 0.71 1 04/12/05 04/12/05 KWG0506003 Methyl tert-Butyl Ether ND U 4.5 0.71 1 04/12/05 04/12/05 KWG0506003 Interpretation (MEK) ND U 4.5 0.80 1 04/12/05 04/12/05 KWG0506003 Chlorocethane ND U 4.5 0.85 1 04/12/05 04/12/05 KWG0506003 Chloroform ND U 4.5 0.85 1 04/12/05 04/12/05 KWG0506003 Chloroform ND U 4.5 0.63 1 04/12/05 04/12/05 KWG0506003 Chloroform ND U 4.5 0.63 1 04/12/05 04/12/05 KWG0506003 Chloroform ND U 4.5 0.63 </td <td></td> <td>ND U</td> <td>4.5</td> <td>0.81</td> <td>1</td> <td>04/12/05</td> <td>04/12/05</td> <td></td> <td></td>		ND U	4.5	0.81	1	04/12/05	04/12/05		
Diisopropyl Ether ND U 8.9 0.37 1 04/12/05 04/12/05 KWG0506003 Methylene Chloride ND U 8.9 2.8 1 04/12/05 04/12/05 KWG0506003 Methyl tert-Butyl Ether ND U 4.5 0.71 1 04/12/05 04/12/05 KWG0506003 trans-1,2-Dichloroethene ND U 4.5 0.80 1 04/12/05 04/12/05 KWG0506003 1,1-Dichloroethane ND U 4.5 0.85 1 04/12/05 04/12/05 KWG0506003 2-Butanone (MEK) ND U 4.5 0.85 1 04/12/05 04/12/05 KWG0506003 2-Butanone (MEK) ND U 4.5 0.63 1 04/12/05 04/12/05 KWG0506003 Cis-1,2-Dichloroethane (TCA) ND U 4.5 0.63 1 04/12/05 04/12/05 KWG0506003 Cyclohexane ND U 4.5 0.63 1 04/12/05 04/12/05 KWG0506003 1,2-Dichloroethane (EDC) N		ND U	4.5	1.7	1	04/12/05			
Methylene Chloride ND U 8.9 2.8 1 04/12/05 04/12/05 KWG0506003 Methyl tert-Butyl Ether ND U 4.5 0.71 1 04/12/05 04/12/05 KWG0506003 trans-1,2-Dichloroethene ND U 4.5 0.80 1 04/12/05 04/12/05 KWG0506003 1,1-Dichloroethane ND U 4.5 0.85 1 04/12/05 04/12/05 KWG0506003 2-Butanone (MEK) ND U 4.5 0.85 1 04/12/05 04/12/05 KWG0506003 cis-1,2-Dichloroethene ND U 4.5 0.63 1 04/12/05 04/12/05 KWG0506003 Chloroform ND U 4.5 0.63 1 04/12/05 04/12/05 KWG0506003 Cyclohexane ND U 4.5 0.63 1 04/12/05 04/12/05 KWG0506003 Cyclohexane ND U 4.5 0.66 1 04/12/05 04/12/05 KWG0506003 1,2-Dichloroethane (EDC) ND U <		ND U	8.9	0.37	1	04/12/05	04/12/05	KWG0506003	
Methyl tert-Butyl Ether ND U 4.5 0.71 1 04/12/05 04/12/05 kWG0506003 trans-1,2-Dichloroethene ND U 4.5 0.80 1 04/12/05 04/12/05 kWG0506003 1,1-Dichloroethane ND U 4.5 0.85 1 04/12/05 04/12/05 kWG0506003 2-Butanone (MEK) ND U 18 14 1 04/12/05 04/12/05 kWG0506003 cis-1,2-Dichloroethene ND U 4.5 0.91 1 04/12/05 04/12/05 kWG0506003 Chloroform ND U 4.5 0.63 1 04/12/05 04/12/05 kWG0506003 1,1,1-Trichloroethane (TCA) ND U 4.5 0.63 1 04/12/05 04/12/05 kWG0506003 Cyclohexane ND U 4.5 0.63 1 04/12/05 04/12/05 kWG0506003 1,2-Dichloroethane (EDC) ND U 4.5 0.66 1 04/12/05 04/12/05 kWG0506003 Trichloroethene (TCE) ND		ND U	8.9	2.8	l	04/12/05	04/12/05	KWG0506003	
trans-1,2-Dichloroethene ND U 4.5 0.80 1 04/12/05 04/12/05 kWG0506003 1,1-Dichloroethane ND U 4.5 0.85 1 04/12/05 04/12/05 kWG0506003 2-Butanone (MEK) ND U 18 14 1 04/12/05 04/12/05 kWG0506003 cis-1,2-Dichloroethene ND U 4.5 0.91 1 04/12/05 04/12/05 kWG0506003 Chloroform ND U 4.5 0.63 1 04/12/05 04/12/05 kWG0506003 1,1-Trichloroethane (TCA) ND U 4.5 0.63 1 04/12/05 04/12/05 kWG0506003 Cyclohexane ND U 4.5 0.63 1 04/12/05 04/12/05 kWG0506003 Carbon Tetrachloride ND U 4.5 0.66 1 04/12/05 04/12/05 kWG0506003 1,2-Dichloroethane (EDC) ND U 4.5 0.73 1 04/12/05 04/12/05 kWG0506003 Trichloroethene (TCE) ND U <td></td> <td>ND U</td> <td>4.5</td> <td>0.71</td> <td>1</td> <td>04/12/05</td> <td></td> <td></td> <td></td>		ND U	4.5	0.71	1	04/12/05			
2-Butanone (MEK) cis-1,2-Dichloroethene ND U 4.5 0.91 1 04/12/05 04/12/05 04/12/05 04/05/06003 Chloroform ND U 4.5 0.63 1 04/12/05 04/12/05 04/12/05 04/12/05 04/12/05 04/05/06003 1,1,1-Trichloroethane (TCA) ND U 4.5 0.63 1 04/12/05 04/12/05 04/12/05 04/12/05 04/05/06003 Cyclohexane ND U 4.5 0.63 1 04/12/05 04/12/05 04/12/05 04/05/06003 Cyclohexane ND U 4.5 0.66 1 04/12/05 04/12/05 04/12/05 04/05/06003 Carbon Tetrachloride ND U 4.5 0.66 1 04/12/05 04/12/05 04/12/05 04/05/06003 1,2-Dichloroethane (EDC) ND U 4.5 0.86 1 04/12/05 04/12/05 04/12/05 04/05/06003 Trichloroethene (TCE) ND U 4.5 0.31 1 04/12/05 04/12/05 04/12/05 04/05 04/05/06003 Trichloroethene (TCE) ND U 4.5 0.31 1 04/12/05 04/12/05 04/12/05 04/05/06003 Trichloroethene ND U 4.5 0.79 1 04/12/05 04/12/05 04/12/05 04/05/06003 Remondichloromethane ND U 4.5 0.58 1 04/12/05 04/12/05 04/12/05 04/12/05 04/05/06003 Methylcyclohexane ND U 4.5 0.78 1 04/12/05 04/12/05 04/12/05 04/12/05 04/05/06003 Cis-1,3-Dichloropropene ND U 4.5 0.83 1 04/12/05 04/12/05 04/12/05 04/12/05 04/05/06003 Toluene ND U 4.5 0.92 1 04/12/05 04/12/05 04/12/05 04/12/05 04/05/06003 Trichloropropene ND U 4.5 0.92 1 04/12/05 04/12/05 04/12/05 04/12/05 04/05/06003	2	ND U	4.5	0.80	1	04/12/05	04/12/05	KWG0506003	
2-Butanone (MEK) cis-1,2-Dichloroethene ND U 4.5 0.91 1 04/12/05 04/12/05 KWG0506003 Chloroform ND U 4.5 0.63 1 04/12/05 04/12/05 KWG0506003 1,1,1-Trichloroethane (TCA) ND U 4.5 0.63 1 04/12/05 04/12/05 KWG0506003 Cyclohexane ND U 4.5 0.63 1 04/12/05 04/12/05 KWG0506003 Cyclohexane ND U 4.5 0.66 1 04/12/05 04/12/05 KWG0506003 Carbon Tetrachloride ND U 4.5 0.66 1 04/12/05 04/12/05 KWG0506003 1,2-Dichloroethane (EDC) ND U 4.5 0.73 1 04/12/05 04/12/05 KWG0506003 Trichloroethene (TCE) ND U 4.5 0.86 1 04/12/05 04/12/05 KWG0506003 Trichloroethene (TCE) ND U 4.5 0.31 1 04/12/05 04/12/05 KWG0506003 Trichloroethene (TCE) ND U 4.5 0.79 1 04/12/05 04/12/05 KWG0506003 Bromodichloromethane ND U 4.5 0.79 1 04/12/05 04/12/05 KWG0506003 Bromodichloromethane ND U 4.5 0.58 1 04/12/05 04/12/05 KWG0506003 Methylcyclohexane ND U 4.5 0.78 1 04/12/05 04/12/05 KWG0506003 Cyclohexane ND U 4.5 0.78 1 04/12/05 04/12/05 KWG0506003 Toluene ND U 4.5 0.83 1 04/12/05 04/12/05 KWG0506003 Toluene ND U 4.5 0.83 1 04/12/05 04/12/05 KWG0506003 Toluene ND U 4.5 0.92 1 04/12/05 04/12/05 KWG0506003 Toluene Toluene ND U 4.5 0.66 1 04/12/05 04/12/05 KWG0506003 Toluene Toluene ND U 4.5 0.66 1 04/12/05 04/12/05 KWG0506003 Toluene ND U 4.5 0.66 1 04/12/05 04/12/05 KWG0506003 Toluene Toluene ND U 4.5 0.66 1 04/12/05 04/12/05 KWG0506003	1.1-Dichloroethane	ND U	4.5	0.85	1	04/12/05			
cis-1,2-Dichloroethene ND U 4.5 0.91 1 04/12/05 04/12/05 kWG0506003 Chloroform ND U 4.5 0.63 1 04/12/05 04/12/05 kWG0506003 1,1,1-Trichloroethane (TCA) ND U 4.5 0.63 1 04/12/05 04/12/05 kWG0506003 Cyclohexane ND U 4.5 0.66 1 04/12/05 04/12/05 kWG0506003 Carbon Tetrachloride ND U 4.5 0.66 1 04/12/05 04/12/05 kWG0506003 1,2-Dichloroethane (EDC) ND U 4.5 0.73 1 04/12/05 04/12/05 kWG0506003 Benzene ND U 4.5 0.86 1 04/12/05 04/12/05 kWG0506003 Trichloroethene (TCE) ND U 4.5 0.31 1 04/12/05 04/12/05 kWG0506003 1,2-Dichloropropane ND U 4.5 0.79 1 04/12/05 04/12/05 kWG0506003 Bromodichloromethane ND U	•	ND U	18	14	1				
1,1,1-Trichloroethane (TCA)	` ,	ND U	4.5	0.91	1	04/12/05	04/12/05	KWG0506003	
Cyclohexane	Chloroform	ND U	4.5	0.63	1				
Carbon Tetrachloride ND U 4.5 0.66 1 04/12/05 04/12/05 KWG0506003 1,2-Dichloroethane (EDC) ND U 4.5 0.73 1 04/12/05 04/12/05 KWG0506003 Benzene ND U 4.5 0.86 1 04/12/05 04/12/05 KWG0506003 Trichloroethene (TCE) ND U 4.5 0.31 1 04/12/05 04/12/05 KWG0506003 1,2-Dichloropropane ND U 4.5 0.79 1 04/12/05 04/12/05 KWG0506003 Bromodichloromethane ND U 4.5 0.58 1 04/12/05 04/12/05 KWG0506003 Methylcyclohexane ND U 4.5 0.78 1 04/12/05 04/12/05 KWG0506003 2-Hexanone ND U 4.5 0.83 1 04/12/05 04/12/05 KWG0506003 Toluene ND U 4.5 0.92 1 04/12/05 04/12/05 KWG0506003 trans-1,3-Dichloropropene ND U 4.5<			4.5	0.63	1				
1,2-Dichloroethane (EDC) ND U 4.5 0.73 1 04/12/05 04/12/05 KWG0506003	Cyclohexane	LN U DN	4.5	0.73	1	04/12/05	04/12/05		
1,2-Dichloroethane (EDC) ND U 4.5 0.73 1 04/12/05 04/12/05 KWG0506003	Carbon Tetrachloride	ND U	4.5	0.66	1	04/12/05			
Benzene ND U 4.5 0.86 1 04/12/05 04/12/05 KWG0506003 Trichloroethene (TCE) ND U 4.5 0.31 1 04/12/05 04/12/05 KWG0506003 1,2-Dichloropropane ND U 4.5 0.79 1 04/12/05 04/12/05 KWG0506003 Bromodichloromethane ND U 4.5 0.58 1 04/12/05 04/12/05 KWG0506003 Methylcyclohexane ND U 4.5 0.78 1 04/12/05 04/12/05 KWG0506003 2-Hexanone ND U 18 6.7 1 04/12/05 04/12/05 KWG0506003 cis-1,3-Dichloropropene ND U 4.5 0.83 1 04/12/05 04/12/05 KWG0506003 Toluene ND U 4.5 0.66 1 04/12/05 04/12/05 KWG0506003 trans-1,3-Dichloropropene ND U 4.5 0.66 1 04/12/05 04/12/05 KWG0506003		ND U	4.5	0.73	1				
1,2-Dichloropropane ND U 4.5 0.79 1 04/12/05 04/12/05 04/12/05 KWG0506003	,	ND U	4.5	0.86	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloropropane	Trichloroethene (TCE)	ND U	4.5	0.31	1	04/12/05			
Bromodichloromethane ND U 4.5 0.58 1 04/12/05 04/12/05 KWG0506003 Methylcyclohexane ND U 4.5 0.78 1 04/12/05 04/12/05 KWG0506003 2-Hexanone ND U 18 6.7 1 04/12/05 04/12/05 KWG0506003 cis-1,3-Dichloropropene ND U 4.5 0.83 1 04/12/05 04/12/05 KWG0506003 Toluene ND U 4.5 0.92 1 04/12/05 04/12/05 KWG0506003 trans-1,3-Dichloropropene ND U 4.5 0.66 1 04/12/05 04/12/05 KWG0506003		ND U	4.5		1				
2-Hexanone ND U 18 6.7 1 04/12/05 04/12/05 KWG0506003 cis-1,3-Dichloropropene ND U 4.5 0.83 1 04/12/05 04/12/05 KWG0506003 Toluene ND U 4.5 0.92 1 04/12/05 04/12/05 KWG0506003 trans-1,3-Dichloropropene ND U 4.5 0.66 1 04/12/05 04/12/05 KWG0506003 trans-1,3-Dichloropropene	,	ND U	4.5	0.58	1	04/12/05	04/12/05		
2-Hexanone ND U 18 6.7 1 04/12/05 04/12/05 KWG0506003 cis-1,3-Dichloropropene ND U 4.5 0.83 1 04/12/05 04/12/05 KWG0506003 Toluene ND U 4.5 0.92 1 04/12/05 04/12/05 KWG0506003 trans-1,3-Dichloropropene ND U 4.5 0.66 1 04/12/05 04/12/05 KWG0506003	Methylcyclohexane	LN U DN	4.5	0.78	1				
Toluene ND U 4.5 0.66 1 04/12/05 KWG0506003 trans-1,3-Dichloropropene ND U 4.5 0.66 1 04/12/05 KWG0506003 KWG0506003		ND U							
trans-1,3-Dichloropropene ND U 4.5 0.66 1 04/12/05 KWG0506003	cis-1,3-Dichloropropene	ND U	4.5	0.83	1	04/12/05	04/12/05	KWG0506003	
trains-1,3-Dictinotopropene 14.5 0.00 1 1 0.00 WW.005.06.002	Toluene	ND U	4.5	0.92	1				
" " O 4 /2 O 4 /		ND U	4.5	0.66	Town Town				
	,	ND U	4.5	0.76	Tanada .	04/12/05	04/12/05	KWG0506003	

Comments:

Printed: 04/20/2005 12:27:05 u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference:

1 of 2 Page

978

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497 Date Collected: 04/06/2005 Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name: Lab Code:

TO63-R5-SB03-0.0.5

Extraction Method: EPA 5035

K2502497-018

Analysis Method:

8260B

Units: ug/Kg Basis: Dry

Level: Low

	Dowlf O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name	Result Q			Tactoi	04/12/05	04/12/05	KWG0506003	
4-Methyl-2-pentanone (MIBK)	ND U	18	6.0	1			KWG0506003	
Tetrachloroethene (PCE)	ND U	4.5	0.34	1	04/12/05	04/12/05		
Dibromochloromethane	ND U	4.5	0.66	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromoethane (EDB)	ND U	18	0,86	1	04/12/05	04/12/05	KWG0506003	
Chlorobenzene	ND U	4.5	0.77	1	04/12/05	04/12/05	KWG0506003	
Ethylbenzene	ND U	4.5	0.63	1	04/12/05	04/12/05	KWG0506003	
m,p-Xylenes	ND U	4.5	1.7	1	04/12/05	04/12/05	KWG0506003	
o-Xylene	ND U	4.5	0.76	1	04/12/05	04/12/05	KWG0506003	
Styrene	ND U	4.5	0.80	1	04/12/05	04/12/05	KWG0506003	
Bromoform	ND U	4.5	0.84	1	04/12/05	04/12/05	KWG0506003	
Isopropylbenzene	ND U	18	0.74	1	04/12/05	04/12/05	KWG0506003	
1,1,2,2-Tetrachloroethane	ND U	4.5	0.81	1	04/12/05	04/12/05	KWG0506003	
1,3-Dichlorobenzene	ND U	4.5	0.78	1	04/12/05	04/12/05	KWG0506003	
1,4-Dichlorobenzene	ND U	4.5	0.90	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichlorobenzene	ND U	4.5	0.71	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromo-3-chloropropane	ND U	18	0.93	1	04/12/05	04/12/05	KWG0506003	
1,2,4-Trichlorobenzene	ND U	18	0.84	1	04/12/05	04/12/05	KWG0506003	
Naphthalene	ND U	18	0.97	1	04/12/05	04/12/05	KWG0506003	
Bromochloromethane	ND U	4.5	1.1	1	04/12/05	04/12/05	KWG0506003	
1,2,3-Trichlorobenzene	ND U	18	0.98	1	04/12/05	04/12/05	KWG0506003	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	106	70-119	04/12/05	Acceptable	
Toluene-d8	110	72-121	04/12/05	Acceptable	
4-Bromofluorobenzene	108	66-122	04/12/05	Acceptable	

Comments:

Printed: 04/20/2005 12:27:05 $u. \Stealth \Crystal.rpt \Form \Im.rpt$

Form 1A - Organic

979

Page 2 of 2

Analytical Results

Client:

Battelle Memorial Institute

Project:

Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R2-SB03-0.0.5

Lab Code:

K2502497-019

Extraction Method: Analysis Method:

EPA 5035 8260B Units: ug/Kg Basis: Dry

Level: Low

	Damile O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name	Result Q			1	04/12/05	04/12/05	KWG0506003	11000
Dichlorodifluoromethane	ND U	8.5	1.2 1.7	1	04/12/05	04/12/05	KWG0506003	
Chloromethane	ND U ND U	8.5 8.5	1.7	1	04/12/05	04/12/05	KWG0506003	
Vinyl Chloride					04/12/05	04/12/05	KWG0506003	
Bromomethane	LN n du	8.5	1.4	1	04/12/05	04/12/05	KWG0506003	
Chloroethane	ND U	8.5	1.4 1.3	1 1	04/12/05	04/12/05	KWG0506003	
Trichlorofluoromethane	ND U	8.5					KWG0506003	
Trichlorotrifluoroethane	ND U	8.5	1.3	1	04/12/05	04/12/05 04/12/05	KWG0506003	
Acetone	31 J	34	17	1	04/12/05		KWG0506003	
1,1-Dichloroethene	ND U	8.5	1.2	1	04/12/05	04/12/05		
Methyl Acetate	ND U	8.5	1.3	1	04/12/05	04/12/05	KWG0506003	
Carbon Disulfide	ND U	8.5	2.6	1	04/12/05	04/12/05	KWG0506003	
Diisopropyl Ether	ND U	17	0.58	1	04/12/05	04/12/05	KWG0506003	
Methylene Chloride	ND U	17	4.3	1	04/12/05	04/12/05	KWG0506003	
Methyl tert-Butyl Ether	ND U	8.5	1.1	1	04/12/05	04/12/05	KWG0506003	
trans-1,2-Dichloroethene	ND U	8.5	1.3	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethane	ND U	8.5	1.4	1	04/12/05	04/12/05	KWG0506003	
2-Butanone (MEK)	ND U	34	21	1	04/12/05	04/12/05	KWG0506003	
cis-1,2-Dichloroethene	ND U	8.5	1.5	1	04/12/05	04/12/05	KWG0506003	
Chloroform	ND U	8.5	0.97	1	04/12/05	04/12/05	KWG0506003	
1,1,1-Trichloroethane (TCA)	ND U	8.5	0.97	1	04/12/05	04/12/05	KWG0506003	
Cyclohexane	LN U DN	8.5	1.2	1	04/12/05	04/12/05	KWG0506003	
Carbon Tetrachloride	ND U	8.5	1.1	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloroethane (EDC)	ND U	8.5	1.2	1	04/12/05	04/12/05	KWG0506003	
Benzene	ND U	8.5	1.4	1	04/12/05	04/12/05	KWG0506003	
Trichloroethene (TCE)	ND U	8.5	0.48	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloropropane	ND U	8.5	1.3	1	04/12/05	04/12/05	KWG0506003	
Bromodichloromethane	ND U	8.5	0.90	1	04/12/05	04/12/05	KWG0506003	
Methylcyclohexane	ND U UJ	8.5	1.2	1	04/12/05	04/12/05	KWG0506003	
2-Hexanone	ND U	34	11	1	04/12/05	04/12/05	KWG0506003	
cis-1,3-Dichloropropene	ND U	8.5	1.3	1	04/12/05	04/12/05	KWG0506003	
Toluene	ND U	8.5	1.5	1	04/12/05	04/12/05	KWG0506003	
trans-1,3-Dichloropropene	ND U	8.5	1.1	1	04/12/05	04/12/05	KWG0506003	
1,1,2-Trichloroethane	ND U	8.5	1.2	1	04/12/05	04/12/05	KWG0506003	

Comments:

Printed: 04/20/2005 12:27:07 u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference:

Page 1 of 2

980

RR47238

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497 **Date Collected: 04/06/2005** Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R2-SB03-0.0.5

Lab Code:

K2502497-019

Extraction Method: Analysis Method:

EPA 5035 8260B

Units: ug/Kg Basis: Dry

Level: Low

Analyta Nama	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name	ND U	34	9.3	1	04/12/05	04/12/05	KWG0506003	
4-Methyl-2-pentanone (MIBK)	ND U	8.5	0.53	1	04/12/05	04/12/05	KWG0506003	
Tetrachloroethene (PCE)	ND U	8.5	1.1	1	04/12/05	04/12/05	KWG0506003	
Dibromochloromethane			1.4	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromoethane (EDB)	ND U	34	1.4	1	04/12/05	04/12/05	KWG0506003	
Chlorobenzene	ND U	8.5		1	04/12/05	04/12/05	KWG0506003	
Ethylbenzene	ND U	8.5	0.97				KWG0506003	
m,p-Xylenes	ND U	8.5	2.6	1	04/12/05	04/12/05	KWG0506003	
o-Xylene	ND U	8.5	1.2	1	04/12/05	04/12/05		
Styrene	ND U	8.5	1.3	1	04/12/05	04/12/05	KWG0506003	
Bromoform	ND U	8.5	1.3	1	04/12/05	04/12/05	KWG0506003	
Isopropylbenzene	ND U	34	1.2	1	04/12/05	04/12/05	KWG0506003	
1,1,2,2-Tetrachloroethane	ND U	8.5	1.3	1	04/12/05	04/12/05	KWG0506003	
	ND U	8.5	1.2	1	04/12/05	04/12/05	KWG0506003	
1,3-Dichlorobenzene	ND U	8.5	1.4	1	04/12/05	04/12/05	KWG0506003	
1,4-Dichlorobenzene	ND U	8.5	1.1	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichlorobenzene		34	1.5	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromo-3-chloropropane	ND U		1.3	1	04/12/05	04/12/05	KWG0506003	
1,2,4-Trichlorobenzene	ND U	34		1	04/12/05	04/12/05	KWG0506003	
Naphthalene	ND U	34	1.6	1				
Bromochloromethane	ND U	8.5	1.7	1	04/12/05	04/12/05	KWG0506003 KWG0506003	
1,2,3-Trichlorobenzene	ND U	34	1.6	1	04/12/05	04/12/05	V M QOOOOOO	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	107	70-119	04/12/05	Acceptable
Toluene-d8	107	72-121	04/12/05	Acceptable
4-Bromofluorobenzene	104	66-122	04/12/05	Acceptable

Comments:

Printed: 04/20/2005 12:27:07

 $u: \label{lem:condition} u: \label{lem:condition} u: \label{lem:condition} Stealth \color="text-align: center;" Crystal.rpt \color="text-align: center;" Form \color="text-align: center;" Crystal.rpt \color="text-align: center;" Form \color="text-align: center;" Crystal.rpt \color=$

Form 1A - Organic

Page 2 of 2

SuperSet Reference:

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502497

Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R2-SB02-0.0.5

Lab Code:

K2502497-020

Extraction Method:

EPA 5035

Analysis Method:

8260B

Units: ug/Kg
Basis: Dry

Level: Low

Aughuta Noma	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name Dichlorodifluoromethane	ND U	8.9	1.3	1	04/12/05	04/12/05	KWG0506003	
Chloromethane	ND U	8.9	1.8	1	04/12/05	04/12/05	KWG0506003	
Vinyl Chloride	ND U	8.9	1.1	1	04/12/05	04/12/05	KWG0506003	
Bromomethane	ND U NJ	8.9	1.5	1	04/12/05	04/12/05	KWG0506003	•
Chloroethane	ND U VC	8.9	1.4	1	04/12/05	04/12/05	KWG0506003	
Trichlorofluoromethane	ND U	8.9	1.3	1	04/12/05	04/12/05	KWG0506003	
Trichlorotrifluoroethane	ND U	8.9	1.4	1	04/12/05	04/12/05	KWG0506003	
	27 J	36	18	1	04/12/05	04/12/05	KWG0506003	
Acetone 1,1-Dichloroethene	ND U	8.9	1.3	1	04/12/05	04/12/05	KWG0506003	
	ND U	8.9	1.4	1	04/12/05	04/12/05	KWG0506003	
Methyl Acetate	ND U	8.9 8.9	2.7	1	04/12/05	04/12/05	KWG0506003	
Carbon Disulfide	ND U	18	0.61	1	04/12/05	04/12/05	KWG0506003	
Diisopropyl Ether			4.5	1	04/12/05	04/12/05	KWG0506003	
Methylene Chloride	ND U ND U	18 8.9	1.2	1	04/12/05	04/12/05	KWG0506003	
Methyl tert-Butyl Ether	ND U	8.9	1.2	1	04/12/05	04/12/05	KWG0506003	
trans-1,2-Dichloroethene						04/12/05	KWG0506003	
1,1-Dichloroethane	ND U	8.9	1.4	1	04/12/05 04/12/05	04/12/05	KWG0506003	
2-Butanone (MEK)	ND U	36	22	1	04/12/05	04/12/05	KWG0506003	
cis-1,2-Dichloroethene	ND U	8.9	1.5	1				
Chloroform	ND U	8.9	1.1	1	04/12/05	04/12/05	KWG0506003 KWG0506003	
1,1,1-Trichloroethane (TCA)	ND U	8.9	1.1	1	04/12/05	04/12/05	KWG0506003	
Cyclohexane	CN U DN	8.9	1.2	1	04/12/05	04/12/05		
Carbon Tetrachloride	ND U	8.9	1.1	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloroethane (EDC)	ND U	8.9	1.2	1	04/12/05	04/12/05	KWG0506003	
Benzene	ND U	8.9	1.4	1	04/12/05	04/12/05	KWG0506003	
Trichloroethene (TCE)	ND U	8.9	0.50	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloropropane	ND U	8.9	1.3	1	04/12/05	04/12/05	KWG0506003	
Bromodichloromethane	ND U	8.9	0.94	1	04/12/05	04/12/05	KWG0506003	
Methylcyclohexane	LN U DN	8.9	1.3	1	04/12/05	04/12/05	KWG0506003	
2-Hexanone	ND U	36	11	1	04/12/05	04/12/05	KWG0506003	
cis-1,3-Dichloropropene	ND U	8.9	1.4	1	04/12/05	04/12/05	KWG0506003	
Toluene	ND U	8.9	1.5	1	04/12/05	04/12/05	KWG0506003	
trans-1,3-Dichloropropene	ND U	8.9	1.1	1	04/12/05	04/12/05	KWG0506003	
1,1,2-Trichloroethane	ND U	8.9	1.3	1	04/12/05	04/12/05	KWG0506003	
-7-7								

Comments:

Printed: 04/20/2005 12:27:09 u:\Stealth\Crystal.rpt\Form1m.rpt

Merged

Form 1A - Organic

SuperSet Reference:

RR47238

Page 1 of 2

Analytical Results

Client:

Battelle Memorial Institute Novato Ballfields/G486063

Project: Sample Matrix:

Soil

Service Request: K2502497 Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R2-SB02-0.0.5

Lab Code:

K2502497-020

E A

Units: ug/Kg Basis: Dry

Level: Low

Extraction Method:	EPA 5035
Analysis Method:	8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methyl-2-pentanone (MIBK)	ND U	36	9.8	1	04/12/05	04/12/05	KWG0506003	
Tetrachloroethene (PCE)	ND U	8.9	0.55	1	04/12/05	04/12/05	KWG0506003	
Dibromochloromethane	ND U	8.9	1.1	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromoethane (EDB)	ND U	36	1.4	1	04/12/05	04/12/05	KWG0506003	
Chlorobenzene	ND U	8.9	1.3	1	04/12/05	04/12/05	KWG0506003	
Ethylbenzene	ND U	8.9	1.1	1	04/12/05	04/12/05	KWG0506003	
m,p-Xylenes	ND U	8.9	2.7	1	04/12/05	04/12/05	KWG0506003	
o-Xylene	ND U	8.9	1.3	1	04/12/05	04/12/05	KWG0506003	
Styrene	ND U	8.9	1.3	1	04/12/05	04/12/05	KWG0506003	
Bromoform	ND U	8.9	1.4	1	04/12/05	04/12/05	KWG0506003	
Isopropylbenzene	ND U	36	1.3	1	04/12/05	04/12/05	KWG0506003	
1,1,2,2-Tetrachloroethane	ND U	8.9	1.4	1	04/12/05	04/12/05	KWG0506003	
1,3-Dichlorobenzene	ND U	8.9	1.3	1	04/12/05	04/12/05	KWG0506003	
1,4-Dichlorobenzene	ND U	8.9	1.5	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichlorobenzene	ND U	8.9	1.2	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromo-3-chloropropane	ND U	36	1.6	1	04/12/05	04/12/05	KWG0506003	
1,2,4-Trichlorobenzene	ND U	36	1.4	1	04/12/05	04/12/05	KWG0506003	
Naphthalene	ND U	36	1.6	1	04/12/05	04/12/05	KWG0506003	
Bromochloromethane	ND U	8.9	1.8	1	04/12/05	04/12/05	KWG0506003	
1,2,3-Trichlorobenzene	ND U	36	1.6	1	04/12/05	04/12/05	KWG0506003	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	107	70-119	04/12/05	Acceptable
Toluene-d8	108	72-121	04/12/05	Acceptable
4-Bromofluorobenzene	103	66-122 0-	04/12/05	Acceptable

Comments:

Printed: 04/20/2005 12:27:09

Form 1A - Organic

Page

SuperSat Deference: DP47738

VALIDATION COMPLETENESS WORKSHEET LDC #: 13575A1

SDG #: K2502497

Level III

Laboratory: Columbia Analytical Services

Reviewer 2nd Reviewer

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	A	Sampling dates: 4/6/05
II.	GC/MS Instrument performance check	4	, · · · · · · · · · · · · · · · · · · ·
III.	Initial calibration	in	70RSD = 30/15. SPECS
IV.	Continuing calibration	w,	70 D = 20. 1ev = >5 /0 V
V.	Blanks	w	./
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	A	
VIII.	Laboratory control samples	A	205 D
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	A	
XI.	Target compound identification	N	
XII.	Compound quantitation/CRQLs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	0
XVI.	Field duplicates	ND	D=3+4.8+7063-R1-5B01-0-0.5(K)50499
XVII.	Field blanks	N	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

D = Duplicate TB = Trip blank

EB = Equipment blank FB = Field blank

Validated Samples:

M:	50il 5						
1/	TO63-R2-SB04-0-0.5	11	TO63-R4-SB04-0-0.5	21	TO63-R1-SB01-0-0.5MS	31/	KW40505901-3
21	TO63-R2-SB04-3-4	12	TO63-R4-SB04-4-5	22	TO63-R1-SB01-0-0.5MSD	32 ²	KW \$0506003-3
3 1	TO63-R2-SB01-0-0.5	13	1063-R5-SB04-0-0.5	23		33	HUK-050605 = 3
4	TO63-R2-SB01-0-0.5 Dup	142	TO63-R5-SB04-5-6	24		34	
5 /	TO63-R2-SB01-1-2	152	TO63-R5-SB02-0-0 5	25		35	
6	TO63-R1-SB04-0-0.5	16	TO63-R5-SB02-3-4	26		36	
7 [TO63-R1-SB04-4-5	17	TO63-R5-SB01-0-0.5	27		37	
8	TO63-R1-SB01-0-0.5	18 2	TO63-R5-SB03-0-0.5	28		38	
9 2	TO63-R1-SB03-0-0.5	19	TO63-R2-SB03-0-0.5	29		39	
10 ²	TO63-R1-SB03-4-5	20	TO63-R2-SB02-0-0.5	30		40	

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846 Method 8260B)

THE PROPERTY OF THE PROPERTY O				
A. Chloromethane*	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Buiylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichloroberzene	DDDD. Isopropyl alcohol
C. Vinyl choride**	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorabenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform*	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethane**	BB. 1,1,2,2-Tetrachloroethane*	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ, Methacrylonitrile
I. 1,1-Dichloroethane*	CC. Toluene**	WW. Bromobenzene	QQQ. ds-1,2-Dichlcroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene*	XX. 1,2,3-Trichloropropane	RRR. m.p-Xylenes	LLLL. Methyl ethyl ketone
K, Chloroform**	EE. Ethylberzene**	YY. n-Propylbenzene	SSS. o-Xylene	MMMM. Ethyl ether
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichlorc-1,2,2-trifluoroethane	NNNN. Benzyl chloride
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	oooo. (ye ohexano
N. 1, ,1-Trichloroethane	HH, Vinyl acstate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	PPPP. Noth Coloboxano
O. Carbon letrachloride	I. 2-Chloroeihylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	aaaa.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane**	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichleropropene	L. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	1111
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-Isopropyltoluene	AAAA. Ethyl tert-bulyl ether	uuuu.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	VVVV.

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

SDG #: K2522249 LDC #: 135/54

VALIDATION FINDINGS WORKSHEET Initial Calibration

Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". & N N/A

Did the laboratory perform a 5 point calibration prior to sample analysis?

Y N N/A Y KIN NA

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?

Y WIND Y

Did the initial calibration meet the acceptance criteria? Were all %RSDs and RRFs within the validation criteria of ≤30 %RSD and ≥0.05 RRF?

I			Т	Т	T	Г	Г		Г	Π	T	Π		Γ			П			Γ
один од городо положения принципалний в вода в в	Qualifications	X 127		9																
	Associated Samples	MITER																		
	Finding RRF (Limit: >0.05)																			
- 11	Finding %RSD (∐mit: ≤30.0%)	[5.7 (=15)	1 8.5	(5.5				·												
	Compound	W	as	ddd																
	Standard ID	104/																		
	# Date	4/11/05				Antimining and the control of the co	The second secon		The state of the s											

SDG #: 12522 LDC #: 135/34

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page: 2nd Reviewer: Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N N/A

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were percent differences (%D) and relative response factors (RRF) within method criteria for all CCC's and SPCC's ? Were all %D and RRFs within the validation criteria of ≤25 %D and ≥0.05 RRF?

Y/N N/A

-				 	 -		 	,	 	 	 			 	_		 7	7	-
	Qualifications	4/10/																	
	Associated Samples	22-12	٠																
Finding BBF	(Limit: >0.05)					1.0													
Finding %D	(Limit: <26.0%)	2) <2																	
	Compound	フフ																	
	Standard ID	0413F003																	
	Date	2/2/05	L																The state of the s
	*							Name of the last o				A CONTRACTOR OF THE PARTY OF TH	WAR AND		MANAGEMENT AND ADDRESS OF THE PARTY OF THE P				

SDG #: (<2\50549 LDC #:13575A

VALIDATION FINDINGS WORKSHEET Blanks

ō 2nd Reviewer: Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Was a method blank associated with every sample in this SDG?

Was a method blank analyzed at least once every 12 hours for each matrix and concentration? Y N/A

Was there contamination in the method blanks? If yes, please see the qualifications below. Blank analysis date: 4/11/05 Y/N N/A

Sample Identification Sample Identification 000 8-1 D Associated Samples: Associated Samples: Z_{μ} N W, +WE 1506003--1065050H= M> Blank ID 00 Blank ID Blank analysis date: 4/2/0 Conc. units: //dec Conc. units: 1445 Compound Compound Methylene chloride Methylene chloride Acetone Acetone CROL 2 Δ

All results were qualified using the criteria stated below except those circled.

CROL

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were also qualified as not detected, "U".

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Ballfields Parcels at DoDHF Novato, CA

Collection Date: April 6, 2005

LDC Report Date: June 15, 2005

Matrix: Soil

Parameters: Volatiles

Validation Level: NFESC Level III

Laboratory: Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): K2502499

Sample Identification

TO63-R1-SB02-0-0.5 TO63-R1-SB01-0-0.5Dup

Introduction

This data review covers 2 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

The review follows the Final Sampling and Analysis Plan for Preliminary Assessment/Site Investigation of Ballfields Parcels at DoDHF Novato, California, (March 23, 2005) and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Raw data were not reviewed for this SDG. The review was based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs) with the following exceptions:

Date	Compound	жпер	Accociated Samples	Flag	A or P
4/11/05	Bromomethane Cyclohexane Methylcyclohexane	15.7 15.8 15.5	All samples in SDG K2502499	J (all detects) UJ (all non-detects)	A

Average relative response factors (RRF) for all volatile target compounds and system performance check compounds (SPCCs) were greater than or equal to 0.05 as required.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

The percent difference (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

All of the continuing calibration RRF values for all system performance check compounds (SPCCs) were within method criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Analysis Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
KWG0506003-3	4/12/05	Bromomethane	1.1 ug/Kg	All samples in SDG K2502499

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated method blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

Raw data were not reviewed for this SDG.

XII. Compound Quantitation and CRQLs

Raw data were not reviewed for this SDG.

XIII. Tentatively Identified Compounds (TICs)

Raw data were not reviewed for this SDG.

XIV. System Performance

Raw data were not reviewed for this SDG.

XV. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

Samples TO63-R1-SB01-0-0.5Dup and TO63-R1-SB01-0-0.5 (from SDG K2502497) were identified as field duplicates. No volatiles were detected in any of these samples.

XVII. Field Blanks

No field blanks were identified in this SDG.

Ballfields Parcels at DoDHF Novato, CA Volatiles - Data Qualification Summary - SDG K2502499

SDG	Sample	Compound	Flag	A or P	Reason
K2502499	TO63-R1-SB02-0-0.5 TO63-R1-SB01-0-0.5Dup	Bromomethane Cyclohexane Methylcyclohexane	J (all detects) UJ (all non-detects)	А	Initial calibration (%RSD)

Ballfields Parcels at DoDHF Novato, CA Volatiles - Laboratory Blank Data Qualification Summary - SDG K2502499

No Sample Data Qualified in this SDG

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502499

Date Collected: 04/06/2005 Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

T063-R1-SB02-0-0.5

Lab Code:

K2502499-011

Extraction Method:

EPA 5035

Units: ug/Kg Basis: Dry

Level: Low

8260B **Analysis Method:**

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND	U	4.9	0.82	1	04/12/05	04/12/05	KWG0506003	
Chloromethane	ND	U	4.9	1.2	1	04/12/05	04/12/05	KWG0506003	
Vinyl Chloride	ND	U	4.9	0.73	1	04/12/05	04/12/05	KWG0506003	
Bromomethane	ND	LN U	4.9	0.94	1	04/12/05	04/12/05	KWG0506003	
Chloroethane	ND		4.9	0.91	1	04/12/05	04/12/05	KWG0506003	
Trichlorofluoromethane	ND	U	4.9	0.86	1	04/12/05	04/12/05	KWG0506003	
Trichlorotrifluoroethane	ND	U	4.9	0.87	1	04/12/05	04/12/05	KWG0506003	
Acetone	ND	U	20	12	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethene	ND	U	4.9	0.83	1	04/12/05	04/12/05	KWG0506003	
Methyl Acetate	ND	U	4.9	0.87	1	04/12/05	04/12/05	KWG0506003	
Carbon Disulfide	ND	U	4.9	1.8	1	04/12/05	04/12/05	KWG0506003	
Diisopropyl Ether	ND	U	9.7	0.40	1	04/12/05	04/12/05	KWG0506003	
Methylene Chloride	ND	U	9.7	3.0	1	04/12/05	04/12/05	KWG0506003	
Methyl tert-Butyl Ether	ND	U	4.9	0.76	1	04/12/05	04/12/05	KWG0506003	
trans-1,2-Dichloroethene	ND	U	4.9	0.86	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethane	ND	U	4.9	0.91	1	04/12/05	04/12/05	KWG0506003	
2-Butanone (MEK)	ND		20	14	1	04/12/05	04/12/05	KWG0506003	
cis-1,2-Dichloroethene	ND	U	4.9	0.97	1	04/12/05	04/12/05	KWG0506003	
Chloroform	ND	U	4.9	0.67	1	04/12/05	04/12/05	KWG0506003	
1,1,1-Trichloroethane (TCA)	ND	U	4.9	0.67	1	04/12/05	04/12/05	KWG0506003	
Cyclohexane	ND	UUJ	4.9	0.79	1	04/12/05	04/12/05	KWG0506003	
Carbon Tetrachloride	ND	U	4.9	0.70	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloroethane (EDC)	ND	U	4.9	0.79	1	04/12/05	04/12/05	KWG0506003	
Benzene	ND	U	4.9	0.93	1	04/12/05	04/12/05	KWG0506003	
Trichloroethene (TCE)	ND	U	4.9	0.33	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloropropane	ND	U	4.9	0.84	1	04/12/05	04/12/05	KWG0506003	
Bromodichloromethane	ND	U	4.9	0.62	1	04/12/05	04/12/05	KWG0506003	
Methylcyclohexane	ND	LUU	4.9	0.83	1	04/12/05	04/12/05	KWG0506003	
2-Hexanone	ND	U	20	7.2	1	04/12/05	04/12/05	KWG0506003	
cis-1,3-Dichloropropene	ND	U	4.9	0.89	1	04/12/05	04/12/05	KWG0506003	
Toluene	ND	U	4.9	0.98	1	04/12/05	04/12/05	KWG0506003	
trans-1,3-Dichloropropene	ND		4.9	0.70	1	04/12/05	04/12/05	KWG0506003	
1,1,2-Trichloroethane	ND	U	4.9	0.81	1	04/12/05	04/12/05	KWG0506003	

Comments:

Analytical Results

Client:

Battelle Memorial Institute Novato Ballfields/G486063

Project: Sample Matrix:

Soil

Service Request: K2502499 Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name:

T063-R1-SB02-0-0.5

Lab Code:

K2502499-011

Extraction Method: Analysis Method:

Bromochloromethane

1,2,3-Trichlorobenzene

EPA 5035 8260B

Units: ug/Kg Basis: Dry

Level: Low

KWG0506003

KWG0506003

04/12/05

04/12/05

04/12/05

04/12/05

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND U	20	6.5	1	04/12/05	04/12/05	KWG0506003	
Tetrachloroethene (PCE)	ND U	4.9	0.37	1	04/12/05	04/12/05	KWG0506003	
Dibromochloromethane	ND U	4.9	0.70	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromoethane (EDB)	ND U	20	0.93	1	04/12/05	04/12/05	KWG0506003	
Chlorobenzene	ND U	4.9	0.82	1	04/12/05	04/12/05	KWG0506003	
Ethylbenzene	ND U	4.9	0.67	1	04/12/05	04/12/05	KWG0506003	
m,p-Xylenes	ND U	4.9	1.8	1	04/12/05	04/12/05	KWG0506003	
o-Xylene	ND U	4.9	0.81	1	04/12/05	04/12/05	KWG0506003	
Styrene	ND U	4.9	0.86	1	04/12/05	04/12/05	KWG0506003	
Bromoform	ND U	4.9	0.90	1	04/12/05	04/12/05	KWG0506003	
Isopropylbenzene	ND U	20	0.80	1	04/12/05	04/12/05	KWG0506003	
1,1,2,2-Tetrachloroethane	ND U	4.9	0.87	1	04/12/05	04/12/05	KWG0506003	
1,3-Dichlorobenzene	ND U	4.9	0.83	1	04/12/05	04/12/05	KWG0506003	
1.4-Dichlorobenzene	ND U	4.9	0.96	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichlorobenzene	ND U	4.9	0.76	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromo-3-chloropropane	ND U	20	1.0	1	04/12/05	04/12/05	KWG0506003	
1,2,4-Trichlorobenzene	ND U	20	0.90	1	04/12/05	04/12/05	KWG0506003	
Naphthalene	ND U	20	1.1	1	04/12/05	04/12/05	KWG0506003	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	109	70-119	04/12/05	Acceptable	
Toluene-d8	104	72-121	04/12/05	Acceptable	
4-Bromofluorobenzene	106	66-122	04/12/05	Acceptable	

4.9

20

1.2

1.1

1

1

Comments:

Printed: 04/19/2005 16:10:26

 $u: \Stealth \Crystal.rpt \Form \Im.rpt$

Merged

ND U

ND U

Form 1A - Organic

Page 2 of 2

SuperSet Reference: RR47211

Analytical Results

Client:

Battelle Memorial Institute

Project:

Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502499

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name:

T063-R1-SB01-0-0.5 DUP

Lab Code:

K2502499-012

Extraction Method: Analysis Method:

EPA 5035

8260B

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND U	6.0	0.89	1	04/12/05	04/12/05	KWG0506003	
Chloromethane	ND U	6.0	1.3	1	04/12/05	04/12/05	KWG0506003	
Vinyl Chloride	ND U	6.0	0.79	1	04/12/05	04/12/05	KWG0506003	
Bromomethane	LN U DN	6.0	1.1	1	04/12/05	04/12/05	KWG0506003	
Chloroethane	ND U	6.0	0.99	1	04/12/05	04/12/05	KWG0506003	
Trichlorofluoromethane	ND U	6.0	0.93	1	04/12/05	04/12/05	KWG0506003	
Trichlorotrifluoroethane	ND U	6.0	0.94	1	04/12/05	04/12/05	KWG0506003	
Acetone	ND U	24	13	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethene	ND U	6.0	0.90	1	04/12/05	04/12/05	KWG0506003	
Methyl Acetate	ND U	6.0	0.94	1	04/12/05	04/12/05	KWG0506003	
Carbon Disulfide	ND U	6.0	1.9	1	04/12/05	04/12/05	KWG0506003	
Diisopropyl Ether	ND U	12	0.43	1	04/12/05	04/12/05	KWG0506003	
Methylene Chloride	ND U	12	3.2	1	04/12/05	04/12/05	KWG0506003	
Methyl tert-Butyl Ether	ND U	6.0	0.83	1	04/12/05	04/12/05	KWG0506003	
trans-1,2-Dichloroethene	ND U	6.0	0.93	1	04/12/05	04/12/05	KWG0506003	
1,1-Dichloroethane	ND U	6.0	0.99	1	04/12/05	04/12/05	KWG0506003	
2-Butanone (MEK)	ND U	24	16	1	04/12/05	04/12/05	KWG0506003	
cis-1,2-Dichloroethene	ND U	6.0	1.1	1	04/12/05	04/12/05	KWG0506003	
Chloroform	ND U	6.0	0.73	1	04/12/05	04/12/05	KWG0506003	
1,1,1-Trichloroethane (TCA)	ND U	6.0	0.73	1	04/12/05	04/12/05	KWG0506003	
Cyclohexane	ND U US	6.0	0.85	1	04/12/05	04/12/05	KWG0506003	
Carbon Tetrachloride	ND U	6.0	0.76	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloroethane (EDC)	ND U	6.0	0.85	1	04/12/05	04/12/05	KWG0506003	
Benzene	ND U	6.0	1.0	1	04/12/05	04/12/05	KWG0506003	
Trichloroethene (TCE)	ND U	6.0	0.36	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichloropropane	ND U	6.0	0.92	î	04/12/05	04/12/05	KWG0506003	
Bromodichloromethane	ND U	6.0	0.68	1	04/12/05	04/12/05	KWG0506003	
	ND U UJ	6.0	0.90	1	04/12/05	04/12/05	KWG0506003	
Methylcyclohexane	ND U	24	7.8	1	04/12/05	04/12/05	KWG0506003	
2-Hexanone	ND U	6.0	0.97	1	04/12/05	04/12/05	KWG0506003	
cis-1,3-Dichloropropene		6.0	1.1	1	04/12/05	04/12/05	KWG0506003	
Toluene	ND U ND U	6.0	0.76	1	04/12/05	04/12/05	KWG0506003	
trans-1,3-Dichloropropene	ND U	6.0	0.78	1	04/12/05	04/12/05	KWG0506003	
1,1,2-Trichloroethane	110 0	0.0						

Comments:

Printed: 04/19/2005 16:10:28 $u: \Stealth \Crystal.rpt \Form \Im.rpt$

Merged

Form 1A - Organic

Page 1 of 2

636

Analytical Results

Client:

Battelle Memorial Institute Novato Ballfields/G486063

Project: Sample Matrix:

Soil

Service Request: K2502499

Date Collected: 04/06/2005 Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

T063-R1-SB01-0-0.5 DUP

Lab Code:

K2502499-012

Extraction Method: Analysis Method:

EPA 5035 8260B

Units: ug/Kg Basis: Dry

Level: Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND	U	24	7.0	1	04/12/05	04/12/05	KWG0506003	
Tetrachloroethene (PCE)	ND		6.0	0.40	1	04/12/05	04/12/05	KWG0506003	
Dibromochloromethane	ND		6.0	0.76	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromoethane (EDB)	ND	U	24	1.0	1	04/12/05	04/12/05	KWG0506003	
Chlorobenzene	ND	U	6.0	0.89	1	04/12/05	04/12/05	KWG0506003	
Ethylbenzene	ND	U	6.0	0.73	1	04/12/05	04/12/05	KWG0506003	
m,p-Xylenes	ND	U	6.0	1.9	1	04/12/05	04/12/05	KWG0506003	
o-Xylene	ND		6.0	0.88	1	04/12/05	04/12/05	KWG0506003	
Styrene	ND		6.0	0.93	1	04/12/05	04/12/05	KWG0506003	
Bromoform	ND	U	6.0	0.98	1	04/12/05	04/12/05	KWG0506003	
Isopropylbenzene	ND	U	24	0.86	1	04/12/05	04/12/05	KWG0506003	
1,1,2,2-Tetrachloroethane	ND	U	6.0	0.94	1	04/12/05	04/12/05	KWG0506003	
1,3-Dichlorobenzene	ND	U	6.0	0.90	1	04/12/05	04/12/05	KWG0506003	
1,4-Dichlorobenzene	ND	U	6.0	1.1	1	04/12/05	04/12/05	KWG0506003	
1,2-Dichlorobenzene	ND	U	6.0	0.83	1	04/12/05	04/12/05	KWG0506003	
1,2-Dibromo-3-chloropropane	ND	U	24	1.1	1	04/12/05	04/12/05	KWG0506003	
1,2,4-Trichlorobenzene	ND	U	24	0.98	1	04/12/05	04/12/05	KWG0506003	
Naphthalene	ND	U	24	1.2	1	04/12/05	04/12/05	KWG0506003	
Bromochloromethane	ND	U	6.0	1.3	1	04/12/05	04/12/05	KWG0506003	
1,2,3-Trichlorobenzene	ND		24	1.2	1	04/12/05	04/12/05	KWG0506003	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	106	70-119	04/12/05	Acceptable	
Toluene-d8	107	72-121	04/12/05	Acceptable	
4-Bromofluorobenzene	102	66-122	04/12/05	Acceptable	

Comments:

Printed: 04/19/2005 16:10:28

 $u:\Stealth\Crystal.rpt\Form\Im.rpt$

Merged

Form 1A - Organic

SuperSet Reference:

2 of 2 Page

LDC #: 13575B1 VALIDATION COMPLETENESS WORKSHEET

SDG #: K2502499

Level III

Laboratory: Columbia Analytical Services

Page: /of/ Reviewer: 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	A	Sampling dates: 4/6/05
11.	GC/MS Instrument performance check	A	,
III.	Initial calibration	W	70850 = 30/15. Spec 5
IV.	Continuing calibration	A	70,PSD € 30/15. Spec 5 70,D € 20. Lev = 1/5)0 V
V.	Blanks	ŹN	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N	direct spirited
VIII.	Laboratory control samples	4	205/3
IX.	Regional Quality Assurance and Quality Control	N	
Χ.	Internal standards	A	
XI.	Target compound identification	N	
XII.	Compound quantitation/CRQLs	N	
XIII.	Tentatively identified compounds (TICs)	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	
XVI.	Field duplicates	ND	D=2+1063-R1-5B01-0-0.5 (KXSA97)
XVII.	Field blanks	2	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

1	TO63-R1-SB02-0-0.5	11	KNG0506003=3	21	31	
2	TO63-R1-SB01-0-0.5Dup	12		22	32	
3		13		23	 33	
4		14		24	34	
5		15		25	35	
6		16		26	36	
7		17		27	37	
8		18		28	38	
9		19		29	39	
10		20		30	40	

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846 Method 8260B)

Postalistica de la companya de la co Establistica de la companya de la co				
A. Chloromethane*	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexare
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride**	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK, 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform*	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF, Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. ',3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethane**	BB. 1,1,2,2-Tetrachloroethane*	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane*	CC. Toluene**	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene⁺	XX. 12,3-Trichloropropane	RRR. m.p-Xylenes	LLLL. Methyl ethyl ketone
K, Chloroform**	EE. Ethylbenzene**	YY. n-Propylbenzene	SSS. o.Xylene	MMMM. Ethyl ether
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 11,2-Trichlore-1,2,2-trifluoroethane	NNNN. Benzy! chloride
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chiorotoluene	WW. 4-Ethyltoluene	pppp.
O. Carbon letrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW Ethanol	9000
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane**	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichleropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	TTT.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-Isopropyltoluene	AAAA. Ethyl tert-butyl ether	UUUU.
T. Diyromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	VVVV.

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

SDG #: K250249 LDC #: 135/53

VALIDATION FINDINGS WORKSHEET Initial Calibration

2nd Reviewer: Page: Reviewer:

METHOD: GC/MS VCA (EPA SW 846 Method 8260B)

Pease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Did the laboratory perform a 5 point calibration prior to sample analysis?

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?_ Did the initial calibration meet the acceptance criteria? Were all %RSDs and RRFs within the validation criteria of ≤30 %RSD and ≥0.05 RRF?

		T-	T		T	T	T		Г	Γ	П	Г	Г						П
	Qualifications	*/ 13/1/																	
	Associated Samples	W+BA																	
יו פוויכויים בייסט אואם בייסט וויון :	Finding RRF (Limit: >0.05)																		
311 Sincina Si =500 /51	Finding %RSD (Limit: <30.0%)	(515)13)	15.8	1 5:51				,						•					
	Compound	ΔΔ.	cxcloboxand	detalloyelo haxame	7/														
	Standard ID	1942																	SO-FERNÁNDEN KANOZIAL KONTANTANIA MARKA KANOZIO KANOZIA KANOZIA KANOZIA KANOZIA KANOZIA KANOZIA KANOZIA KANOZI
	Date	4/11/05																	INTERVENCE PRODUCTION AND AND AND AND AND AND AND AND AND AN
	#			*															

SDG #: KOSCO SARO LDC #: [35/3/B

VALIDATION FINDINGS WORKSHEET Blanks

Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identifled as "N/A". Y N N/A

Was a method blank associated with every sample in this SDG?

Was a method blank analyzed at least once every 12 hours for each matrix and concentration?

Was there contamination in the method blanks? If yes, please see the qualifications below. A/N N/A N N/A

m	Sample Identification							
-	Samp							,
Associated Samples:								
50/	Blank ID	€-809e50+MJ						
Blank analysis date: 4/2/05	Compound	AND THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF	Methylene chloride	Acetone	9	THE REPORT OF THE PROPERTY OF		CROL

Blank analysis date: Conc. units:

Compound

Methylene chloride

Acetone

Sample Identification Blank ID

Associated Samples:

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Wethylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Ballfields Parcels at DoDHF Novato, CA

Collection Date:

April 6, 2005

LDC Report Date:

June 15, 2005

Matrix:

Soil

Parameters:

Volatiles

Validation Level:

NFESC Level III & IV

Laboratory:

Columbia Analytical Services, Inc.

Sample Delivery Group (SDG): K2502505

Sample Identification

TO63-R3-SB04-0-0.5

TO63-R3-SB04-2-3**

TO63-R3-SB01-0-0.5

TO63-R3-SB01-4-5

TO63-R3-SB02-0-0.5

TO63-R3-SB03-0-0.5**

TO63-R4-SB03-0-0.5

TO63-R4-SB03-3-4

TO63-R4-SB02-0-0.5

TO63-R4-SB01-0-0.5**

^{**}Indicates sample underwent NFESC Level IV review

Introduction

This data review covers 10 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8260B for Volatiles.

The review follows the Final Sampling and Analysis Plan for Preliminary Assessment/Site Investigation of Ballfields Parcels at DoDHF Novato, California, (March 23, 2005) and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the methods stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Samples indicated by a double asterisk on the front cover underwent NFESC Level IV review. NFESC Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by NFESC Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

_

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs) with the following exceptions:

Date	Compound	%RSD	Associated Samples	Flag	A or P
4/11/05	Bromomethane Cyclohexane Methylcyclohexane	15.7 15.8 15.5	All samples in SDG K2502505	J (all detects) UJ (all non-detects)	A

Average relative response factors (RRF) for all volatile target compounds and system performance check compounds (SPCCs) were greater than or equal to 0.05 as required.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

Percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for calibration check compounds (CCCs).

The percent difference (%D) of the second source calibration standard were less than or equal to 25.0% for all compounds.

All of the continuing calibration RRF values for all system performance check compounds (SPCCs) were within method criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Analysis Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
KWG0505901-3	4/11/05	Acetone Bromomethane	10 ug/Kg 0.80 ug/Kg	All samples in SDG K2502505

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound TIC (RT in minutes)	Reported Concentration	Modified Final Concentration
TO63-R3-SB04-2-3**	Acetone	45 ug/Kg	50U ug/Kg
TO63-R3-SB01-0-0.5	Acetone	45 ug/Kg	45U ug/Kg

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which NFESC Level IV review was performed. Raw data were not evaluated for the samples reviewed by NFESC Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which NFESC Level IV review was performed. Raw data were not evaluated for the samples reviewed by NFESC Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

XIV. System Performance

The system performance was within validation criteria for samples on which NFESC Level IV review was performed. Raw data were not evaluated for the samples reviewed by NFESC Level III criteria.

XV. Overall Assessment

Data flags are summarized at the end of this report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

XVII. Field Blanks

No field blanks were identified in this SDG.

Ballfields Parcels at DoDHF Novato, CA Volatiles - Data Qualification Summary - SDG K2502505

SDG	Sample	Compound	Flag	A or P	Reason
K2502505	TO63-R3-SB04-0-0.5 TO63-R3-SB04-2-3** TO63-R3-SB01-0-0.5 TO63-R3-SB01-4-5 TO63-R3-SB02-0-0.5 TO63-R3-SB03-0-0.5** TO63-R4-SB03-0-0.5 TO63-R4-SB03-3-4 TO63-R4-SB02-0-0.5 TO63-R4-SB01-0-0.5**	Bromomethane Cyclohexane Methylcyclohexane	J (all detects) UJ (all non-detects)	Α	Initial calibration (%RSD)

Ballfields Parcels at DoDHF Novato, CA Volatiles - Laboratory Blank Data Qualification Summary - SDG K2502505

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P
K2502505	TO63-R3-SB04-2-3**	Acetone	50U ug/Kg	Α
K2502505	TO63-R3-SB01-0-0.5	Acetone	45U ug/Kg	А

Analytical Results

Client: Project:

Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502505

Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R3-SB04-0-0.5

Lab Code:

K2502505-001

Extraction Method: Analysis Method:

EPA 5035 8260B

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND U	4.5	0.80	1 .	04/11/05	04/11/05		Note
Chloromethane	ND U	4.5	1.2	î	04/11/05	04/11/05	KWG0505901	
Vinyl Chloride	ND U	4.5	0.71	1	04/11/05	04/11/05	KWG0505901	
Bromomethane	ND U UJ	4.5	0.91	1	04/11/05	04/11/05	KWG0505901	
Chloroethane	ND U	4.5	0.89	1	04/11/05	04/11/05	KWG0505901	
Trichlorofluoromethane	ND U	4.5	0.83	1	04/11/05	04/11/05	KWG0505901	
Trichlorotrifluoroethane	ND U	4.5	0.84	1	04/11/05	04/11/05		
Acetone	ND U	18	12	1	04/11/05		KWG0505901	
1,1-Dichloroethene	ND U	4.5	0.81	1	04/11/05	04/11/05 04/11/05	KWG0505901	
Methyl Acetate	ND U	4.5	0.84				KWG0505901	
Carbon Disulfide	ND U	4.5	1.7	1	04/11/05	04/11/05	KWG0505901	
Diisopropyl Ether	ND U	8 .9	0.39	1	04/11/05	04/11/05	KWG0505901	
Methylene Chloride	ND U			1	04/11/05	04/11/05	KWG0505901	
Methyl tert-Butyl Ether	ND U	8.9	2.9	1	04/11/05	04/11/05	KWG0505901	
trans-1,2-Dichloroethene	ND U	4.5	0.74	1	04/11/05	04/11/05	KWG0505901	
1,1-Dichloroethane		4.5	0.83	1	04/11/05	04/11/05	KWG0505901	
	ND U	4.5	0.89	1	04/11/05	04/11/05	KWG0505901	
2-Butanone (MEK) cis-1,2-Dichloroethene	ND U	18	14	1	04/11/05	04/11/05	KWG0505901	
	ND U	4.5	0.94	1	04/11/05	04/11/05	KWG0505901	
Chloroform	ND U	4.5	0.65	1	04/11/05	04/11/05	KWG0505901	
1,1,1-Trichloroethane (TCA)	ND U	4.5	0.65	1	04/11/05	04/11/05	KWG0505901	
Cyclohexane	LN U DN	4.5	0.76	-1	04/11/05	04/11/05	KWG0505901	
Carbon Tetrachloride	ND U	4.5	0.68	1	04/11/05	04/11/05	KWG0505901	-
1,2-Dichloroethane (EDC)	ND U	4.5	0.76	1	04/11/05	04/11/05	KWG0505901	
Benzene	ND U	4.5	0.90	1	04/11/05	04/11/05	KWG0505901	
Prichloroethene (TCE)	ND U	4.5	0.32	1	04/11/05	04/11/05	KWG0505901	
1,2-Dichloropropane	ND U	4.5	0.82	Î	04/11/05	04/11/05	KWG0505901	
Bromodichloromethane	ND U	4.5	0.60	1	04/11/05	04/11/05	KWG0505901	
Methylcyclohexane	ND U UJ	4.5	0.81	1	04/11/05			
-Hexanone	ND U	18	6.9	1	04/11/05	04/11/05	KWG0505901	
ris-1,3-Dichloropropene	ND U	4.5	0.86	1	04/11/05		KWG0505901	
oluene	ND U	4.5	0.95				KWG0505901	
rans-1,3-Dichloropropene	ND U	4.5 4.5	0.95	1	04/11/05		KWG0505901	
,1,2-Trichloroethane	ND U	4.5	0.68	The same of the sa	04/11/05		KWG0505901	
	110 0	+.5	U. /8	1	04/11/05	04/11/05	KWG0505901	

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502505

Date Collected: 04/06/2005 Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R3-SB04-0-0.5

Lab Code:

K2502505-001

Extraction Method: Analysis Method:

EPA 5035 8260B

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND U	18	6.3	1	04/11/05	04/11/05	KWG0505901	
Tetrachloroethene (PCE)	ND U	4.5	0.36	1	04/11/05	04/11/05	KWG0505901	
Dibromochloromethane	ND U	4.5	0.68	1	04/11/05	04/11/05	KWG0505901	
1,2-Dibromoethane (EDB)	ND U	18	0.90	1	04/11/05	04/11/05	KWG0505901	
Chlorobenzene	ND U	4.5	0.80	1	04/11/05	04/11/05	KWG0505901	
Ethylbenzene	ND U	4.5	0.65	1	04/11/05	04/11/05	KWG0505901	
m,p-Xylenes	ND U	4.5	1.7	1	04/11/05	04/11/05	KWG0505901	
o-Xylene	ND U	4.5	0.78	1	04/11/05	04/11/05	KWG0505901	
Styrene	ND U	4.5	0.83	1	04/11/05	04/11/05	KWG0505901	
Bromoform	ND U	4.5	0.88	1	04/11/05	04/11/05	KWG0505901	
Isopropylbenzene	ND U	18	0.77	1	04/11/05	04/11/05	KWG0505901	
1,1,2,2-Tetrachloroethane	ND U	4.5	0.84	. 1	04/11/05	04/11/05	KWG0505901	
1,3-Dichlorobenzene	ND U	4.5	0.81	1	04/11/05	04/11/05	KWG0505901	
1,4-Dichlorobenzene	ND U	4.5	0.93	1	04/11/05	04/11/05	KWG0505901	
1,2-Dichlorobenzene	ND U	4.5	0.74	1	04/11/05	04/11/05	KWG0505901	
1,2-Dibromo-3-chloropropane	ND U	18	0.97	1	04/11/05	04/11/05	KWG0505901	
1,2,4-Trichlorobenzene	ND U	18	0.88	1	04/11/05	04/11/05	KWG0505901	
Naphthalene	ND U	18	1.1	1	04/11/05	04/11/05	KWG0505901	
Bromochloromethane	ND U	4.5	1.2	1	04/11/05	04/11/05	KWG0505901	
1,2,3-Trichlorobenzene	ND U	18	1.1	1	04/11/05	04/11/05	KWG0505901	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	107	70-119	04/11/05	Acceptable	
Toluene-d8	111	72-121	04/11/05	Acceptable	
4-Bromofluorobenzene	112	66-122	04/11/05	Acceptable	

Comments:

Page 2 of 2 Printed: 04/19/2005 12:43:41 Form 1A - Organic DD 477100

Analytical Results

Client: Project:

Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502505

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name: Lab Code: TO63-R3-SB04-2-3 K2502505-002

Extraction Method: Analysis Method:

EPA 5035 8260B Units: ug/Kg Basis: Dry

Level: Low

		MDI	MAT	Dilution	Date	Date	Extraction	Note
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND U	13	1.8	1	04/11/05	04/11/05	KWG0505901	
Chloromethane	ND U	13	2.5	1	04/11/05	04/11/05	KWG0505901	
Vinyl Chloride	ND U	13	1.6	1	04/11/05	04/11/05	KWG0505901	
Bromomethane	ND U UJ	13	2.0	1	04/11/05	04/11/05	KWG0505901	
Chloroethane	ND U	13	2.0	1	04/11/05	04/11/05	KWG0505901	
Trichlorofluoromethane	ND U	13	1.9	1	04/11/05	04/11/05	KWG0505901	
Trichlorotrifluoroethane	ND U	13	1.9	1	04/11/05	04/11/05	KWG0505901	
Acetone	45 J 50V	- 50	25	1	04/11/05	04/11/05	KWG0505901	
1,1-Dichloroethene	ND U	13	1.8	1	04/11/05	04/11/05	KWG0505901	
Methyl Acetate	ND U	13	1.9	1	04/11/05	04/11/05	KWG0505901	
Carbon Disulfide	ND U	13	3.8	1	04/11/05	04/11/05	KWG0505901	
Diisopropyl Ether	ND U	25	0.85	1	04/11/05	04/11/05	KWG0505901	
Methylene Chloride	ND U	25	6.2	1	04/11/05	04/11/05	KWG0505901	
Methyl tert-Butyl Ether	ND U	13	1.7	1	04/11/05	04/11/05	KWG0505901	
trans-1,2-Dichloroethene	ND U	13	1.9	1	04/11/05	04/11/05	KWG0505901	
1,1-Dichloroethane	ND U	13	2.0	1	04/11/05	04/11/05	KWG0505901	
2-Butanone (MEK)	ND U	50	30	1	04/11/05	04/11/05	KWG0505901	
cis-1,2-Dichloroethene	ND U	13	2.1	1	04/11/05	04/11/05	KWG0505901	
Chloroform	ND U	13	1.5	1	04/11/05	04/11/05	KWG0505901	
1,1,1-Trichloroethane (TCA)	ND U	13	1.5	1	04/11/05	04/11/05	KWG0505901	
Cyclohexane	LN U DN	13	1.7	1	04/11/05	04/11/05	KWG0505901	
Carbon Tetrachloride	ND U	13	1.5	1	04/11/05	04/11/05	KWG0505901	
1,2-Dichloroethane (EDC)	ND U	13	1.7	1	04/11/05	04/11/05	KWG0505901	
Benzene	ND U	13	2.0	1	04/11/05	04/11/05	KWG0505901	
Trichloroethene (TCE)	ND U	13	0.70	1	04/11/05	04/11/05	KWG0505901	
1,2-Dichloropropane	ND U	13	1.8	1	04/11/05	04/11/05	KWG0505901	
Bromodichloromethane	ND U	13	1.4	1	04/11/05	04/11/05	KWG0505901	
Methylcyclohexane	ND U UJ	13	1.8	1	04/11/05	04/11/05	KWG0505901	
2-Hexanone	ND U	50	16	1	04/11/05	04/11/05	KWG0505901	
cis-1,3-Dichloropropene	ND U	13	1.9	1	04/11/05	04/11/05	KWG0505901	
Toluene	ND U	13	2.1	1	04/11/05	04/11/05	KWG0505901	
trans-1,3-Dichloropropene	ND U	13	1.5	1	04/11/05	04/11/05	KWG0505901	
1,1,2-Trichloroethane	ND U	13	1.8	1	04/11/05	04/11/05	KWG0505901	

Comments: _____

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Service Request: K2502505

Date Collected: 04/06/2005 Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name: Lab Code:

TO63-R3-SB04-2-3 K2502505-002

Extraction Method: EPA 5035

Analysis Method:

8260B

Units: ug/Kg Basis: Dry Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND U	50	14	1	04/11/05	04/11/05	KWG0505901	
Tetrachloroethene (PCE)	ND U	13	0.77	1	04/11/05	04/11/05	KWG0505901	
Dibromochloromethane	ND U	13	1.5	1	04/11/05	04/11/05	KWG0505901	
1,2-Dibromoethane (EDB)	ND U	50	2.0	1	04/11/05	04/11/05	KWG0505901	
Chlorobenzene	ND U	13	1.8	1	04/11/05	04/11/05	KWG0505901	
Ethylbenzene	ND U	13	1.5	1	04/11/05	04/11/05	KWG0505901	
m,p-Xylenes	ND U	13	3.8	1	04/11/05	04/11/05	KWG0505901	
o-Xylene	ND U	13	1.8	1	04/11/05	04/11/05	KWG0505901	
Styrene	ND U	13	1.9	1	04/11/05	04/11/05	KWG0505901	
Bromoform	ND U	13	2.0	1	04/11/05	04/11/05	KWG0505901	
Isopropylbenzene	ND U	50	1.7	1	04/11/05	04/11/05	KWG0505901	
1,1,2,2-Tetrachloroethane	ND U	13	1.9	1	04/11/05	04/11/05	KWG0505901	
1,3-Dichlorobenzene	ND U	13	1.8	1	04/11/05	04/11/05	KWG0505901	
1,4-Dichlorobenzene	ND U	13	2.1	1	04/11/05	04/11/05	KWG0505901	
1,2-Dichlorobenzene	ND U	13	1.7	1	04/11/05	04/11/05	KWG0505901	
1,2-Dibromo-3-chloropropane	ND U	50	2.2	1	04/11/05	04/11/05	KWG0505901	
1,2,4-Trichlorobenzene	ND U	50	2.0	1	04/11/05	04/11/05	KWG0505901	
Naphthalene	ND U	50	2.2	1	04/11/05	04/11/05	KWG0505901	
Bromochloromethane	ND U	13	2.5	1	04/11/05	04/11/05	KWG0505901	
1,2,3-Trichlorobenzene	ND U	50	2.3	1	04/11/05	04/11/05	KWG0505901	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	108	70-119	04/11/05	Acceptable	
Toluene-d8	108	72-121	04/11/05	Acceptable	
4-Bromofluorobenzene	110	66-122	04/11/05	Acceptable	

Comments:

Printed: 04/19/2005 12:43:44

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502505

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R3-SB01-0-0.5

Lab Code:

K2502505-003

Extraction Method:

EPA 5035

Units: ug/Kg Basis: Dry

Level: Low

Analysis Method: 8260B

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND U	8.9	1.3	1	04/11/05	04/12/05	KWG0505901	
Chloromethane	ND U	8.9	1.8	1	04/11/05	04/12/05	KWG0505901	
Vinyl Chloride	ND U	8.9	1.1	1	04/11/05	04/12/05	KWG0505901	
Bromomethane	ND U L	1J 8.9	1.5	1	04/11/05	04/12/05	KWG0505901	
Chloroethane	ND U	8.9	1.4	1	04/11/05	04/12/05	KWG0505901	
Trichlorofluoromethane	ND U	8.9	1.3	1	04/11/05	04/12/05	KWG0505901	
Trichlorotrifluoroethane	ND U	8.9	1.4	1	04/11/05	04/12/05	KWG0505901	
Acetone	45	U 36	18	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethene	ND U	8.9	1.3	1	04/11/05	04/12/05	KWG0505901	
Methyl Acetate	ND U	8.9	1.4	1	04/11/05	04/12/05	KWG0505901	
Carbon Disulfide	ND U	8.9	2.7	1	04/11/05	04/12/05	KWG0505901	
Diisopropyl Ether	ND U	18	0.61	1	04/11/05	04/12/05	KWG0505901	
Methylene Chloride	ND U	18	4.5	1	04/11/05	04/12/05	KWG0505901	
Methyl tert-Butyl Ether	ND U	8.9	1.2	1	04/11/05	04/12/05	KWG0505901	
trans-1,2-Dichloroethene	ND U	8.9	1.3	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethane	ND U	8.9	1.4	1	04/11/05	04/12/05	KWG0505901	
2-Butanone (MEK)	ND U	36	22	1	04/11/05	04/12/05	KWG0505901	
cis-1,2-Dichloroethene	ND U	8.9	1.5	1	04/11/05	04/12/05	KWG0505901	
Chloroform	ND U	8.9	1.1	1	04/11/05	04/12/05	KWG0505901	
1,1,1-Trichloroethane (TCA)	ND U	8.9	1.1	1	04/11/05	04/12/05	KWG0505901	
Cyclohexane	ND U	8.9	1.2	1	04/11/05	04/12/05	KWG0505901	,,,, ,
Carbon Tetrachloride	ND U	8.9	1.1	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloroethane (EDC)	ND U	8.9	1.2	1	04/11/05	04/12/05	KWG0505901	
Benzene	ND U	8.9	1.5	1	04/11/05	04/12/05	KWG0505901	
Trichloroethene (TCE)	ND U	8.9	0.50	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloropropane	ND U	8.9	1.3	1	04/11/05	04/12/05	KWG0505901	
Bromodichloromethane	ND U	8.9	0.94	1	04/11/05	04/12/05	KWG0505901	
Methylcyclohexane	ND U	8.9	1.3	1	04/11/05	04/12/05	KWG0505901	
2-Hexanone	ND U	36	11	1	04/11/05	04/12/05	KWG0505901	
cis-1,3-Dichloropropene	ND U	8.9	1.4	1	04/11/05	04/12/05	KWG0505901	
Toluene	ND U	8.9	1.5	1	04/11/05	04/12/05	KWG0505901	
trans-1,3-Dichloropropene	ND U	8.9	1.1	1	04/11/05	04/12/05	KWG0505901	
1,1,2-Trichloroethane	ND U	8.9	1.3	1	04/11/05	04/12/05	KWG0505901	

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502505

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R3-SB01-0-0.5

Lab Code:

K2502505-003

Extraction Method: Analysis Method:

EPA 5035

8260B

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND U	36	9.8	1	04/11/05	04/12/05	KWG0505901	
Tetrachloroethene (PCE)	ND U	8.9	0.55	1	04/11/05	04/12/05	KWG0505901	
Dibromochloromethane	ND U	8.9	1.1	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromoethane (EDB)	ND U	36	1.5	1	04/11/05	04/12/05	KWG0505901	
Chlorobenzene	ND U	8.9	1.3	1	04/11/05	04/12/05	KWG0505901	
Ethylbenzene	ND U	8.9	1.1	1	04/11/05	04/12/05	KWG0505901	
m,p-Xylenes	ND U	8.9	2.7	1	04/11/05	04/12/05	KWG0505901	
o-Xylene	ND U	8.9	1.3	1	04/11/05	04/12/05	KWG0505901	
Styrene	ND U	8.9	1.3	1	04/11/05	04/12/05	KWG0505901	
Bromoform	ND U	8.9	1.4	1	04/11/05	04/12/05	KWG0505901	
Isopropylbenzene	ND U	36	1.3	1	04/11/05	04/12/05	KWG0505901	
1,1,2,2-Tetrachloroethane	ND U	8.9	1.4	1	04/11/05	04/12/05	KWG0505901	
1,3-Dichlorobenzene	ND U	8.9	1.3	1	04/11/05	04/12/05	KWG0505901	
1,4-Dichlorobenzene	ND U	8.9	1.5	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichlorobenzene	ND U	8.9	1.2	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromo-3-chloropropane	ND U	36	1.6	1	04/11/05	04/12/05	KWG0505901	
1,2,4-Trichlorobenzene	ND U	36	1.4	1	04/11/05	04/12/05	KWG0505901	
Naphthalene	ND U	36	1.6	1	04/11/05	04/12/05	KWG0505901	
Bromochloromethane	ND U	8.9	1.8	1	04/11/05	04/12/05	KWG0505901	
1,2,3-Trichlorobenzene	ND U	36	1.6	1	04/11/05	04/12/05	KWG0505901	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	106	70-119	04/12/05	Acceptable
Toluene-d8	106	72-121	04/12/05	Acceptable
4-Bromofluorobenzene	111	66-122	04/12/05	Acceptable

Comments:

Page 2 of 2 Form 1A - Organic Printed: 04/19/2005 12:43:47

Analytical Results

Client: Project:

Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502505

Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name: Lab Code:

TO63-R3-SB01-4-5 K2502505-004

Extraction Method: Analysis Method:

EPA 5035 8260B

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name Result Q MRL MDL Factor Extracted Analyzed Lot N Dichlorodifluoromethane ND U 4.7 0.80 1 04/11/05 04/12/05 KWG0505901 Chloromethane ND U 4.7 1.2 1 04/11/05 04/12/05 KWG0505901	<u>Note</u>
Dictional distribution of the second s	
Chloromethane ND U 4.7 1.2 1 04/11/05 04/12/05 KWG0505901	
Cinordination	
Vinyl Chloride ND U 4.7 0.71 1 04/11/05 04/12/05 KWG0505901	
Bromomethane ND U UJ 4.7 0.92 1 04/11/05 04/12/05 KWG0505901	
Chloroethane ND U 4.7 0.90 1 04/11/05 04/12/05 KWG0505901	
Trichlorofluoromethane ND U 4.7 0.84 1 04/11/05 04/12/05 KWG0505901	
Trichlorotrifluoroethane ND U 4.7 0.85 1 04/11/05 04/12/05 KWG0505901	
Acetone ND U 19 12 1 04/11/05 04/12/05 KWG0505901	
1,1-Dichloroethene ND U 4.7 0.82 1 04/11/05 04/12/05 KWG0505901	
Methyl Acetate ND U 4.7 0.85 1 04/11/05 04/12/05 KWG0505901	*************
Carbon Disulfide ND U 4.7 1.8 1 04/11/05 04/12/05 KWG0505901	
Diisopropyl Ether ND U 9.4 0.39 1 04/11/05 04/12/05 KWG0505901	
Methylene Chloride ND U 9.4 2.9 1 04/11/05 04/12/05 KWG0505901	
Methyl tert-Butyl Ether ND U 4.7 0.75 1 04/11/05 04/12/05 KWG0505901	
trans-1,2-Dichloroethene ND U 4.7 0.84 1 04/11/05 04/12/05 KWG0505901	
1,1-Dichloroethane ND U 4.7 0.90 1 04/11/05 04/12/05 KWG0505901	
2-Butanone (MEK) ND U 19 14 1 04/11/05 04/12/05 KWG0505901	
cis-1,2-Dichloroethene ND U 4.7 0.95 1 04/11/05 04/12/05 KWG0505901	
Chloroform ND U 4.7 0.66 1 04/11/05 04/12/05 KWG0505901	
1,1,1-Trichloroethane (TCA) ND U 4.7 0.66 1 04/11/05 04/12/05 KWG0505901	
Cyclohexane ND U UJ 4.7 0.77 1 04/11/05 04/12/05 KWG0505901	
Carbon Tetrachloride ND U 4.7 0.69 1 04/11/05 04/12/05 KWG0505901	
1,2-Dichloroethane (EDC) ND U 4.7 0.77 1 04/11/05 04/12/05 KWG0505901	
Benzene ND U 4.7 0.91 1 04/11/05 04/12/05 KWG0505901	
Trichloroethene (TCE) ND U 4.7 0.32 1 04/11/05 04/12/05 KWG0505901	
1,2-Dichloropropane ND U 4.7 0.83 1 04/11/05 04/12/05 KWG0505901	
Bromodichloromethane ND U 4.7 0.61 1 04/11/05 04/12/05 KWG0505901	
Methylcyclohexane ND U UJ 4.7 0.82 1 04/11/05 04/12/05 KWG0505901	
2-Hexanone ND U 19 7.0 1 04/11/05 04/12/05 KWG0505901	
cis-1,3-Dichloropropene ND U 4.7 0.87 1 04/11/05 04/12/05 KWG0505901	
Toluene ND U 4.7 0.96 1 04/11/05 04/12/05 KWG0505901	
trans-1,3-Dichloropropene ND U 4.7 0.69 1 04/11/05 04/12/05 KWG0505901	
1,1,2-Trichloroethane ND U 4.7 0.79 1 04/11/05 04/12/05 KWG0505901	

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502505

Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name: Lab Code:

TO63-R3-SB01-4-5 K2502505-004

Extraction Method: Analysis Method:

EPA 5035

8260B

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
4-Methyl-2-pentanone (MIBK)	ND U	19	6.3	1	04/11/05	04/12/05	KWG0505901	
Tetrachloroethene (PCE)	ND U	4.7	0.36	1	04/11/05	04/12/05	KWG0505901	
Dibromochloromethane	ND U	4.7	0.69	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromoethane (EDB)	ND U	19	0.91	1	04/11/05	04/12/05	KWG0505901	
Chlorobenzene	ND U	4.7	0.80	1	04/11/05	04/12/05	KWG0505901	
Ethylbenzene	ND U	4.7	0.66	1	04/11/05	04/12/05	KWG0505901	
m,p-Xylenes	ND U	4.7	1.8	1	04/11/05	04/12/05	KWG0505901	***************************************
o-Xylene	ND U	4.7	0.79	1	04/11/05	04/12/05	KWG0505901	
Styrene	ND U	4.7	0.84	1	04/11/05	04/12/05	KWG0505901	
Bromoform	ND U	4.7	0.88	1	04/11/05	04/12/05	KWG0505901	
Isopropylbenzene	ND U	19	0.78	1	04/11/05	04/12/05	KWG0505901	
1,1,2,2-Tetrachloroethane	ND U	4.7	0.85	1	04/11/05	04/12/05	KWG0505901	
1,3-Dichlorobenzene	ND U	4.7	0.82	1	04/11/05	04/12/05	KWG0505901	
1,4-Dichlorobenzene	ND U	4.7	0.94	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichlorobenzene	ND U	4.7	0.75	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromo-3-chloropropane	ND U	19	0.98	1	04/11/05	04/12/05	KWG0505901	
1,2,4-Trichlorobenzene	ND U	19	0.88	1	04/11/05	04/12/05	KWG0505901	
Naphthalene	ND U	19	1.1	1	04/11/05	04/12/05	KWG0505901	
Bromochloromethane	ND U	4.7	1.2	1	04/11/05	04/12/05	KWG0505901	
1.2.3-Trichlorobenzene	ND U	19	1.1	1	04/11/05	04/12/05	KWG0505901	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	105	70-119	04/12/05	Acceptable	
Toluene-d8	109	72-121	04/12/05	Acceptable	
4-Bromofluorobenzene	105	66-122	04/12/05	Acceptable	

Form 1A - Organic

Comments:

Printed: 04/19/2005 12:43:50

Page 2 of 2

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502505

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name: Lab Code: TO63-R3-SB02-0-0.5

Extraction Method:

K2502505-005

Analysis Method:

EPA 5035 8260B Units: ug/Kg
Basis: Dry
Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND U	4.8	0.80	1	04/11/05	04/12/05	KWG0505901	
Chloromethane	ND U	4.8	1.2	1	04/11/05	04/12/05	KWG0505901	
Vinyl Chloride	ND U	4.8	0.71	1	04/11/05	04/12/05	KWG0505901	
Bromomethane	ND U UJ	4.8	0.91	1	04/11/05	04/12/05	KWG0505901	
Chloroethane	ND U	4.8	0.89	1	04/11/05	04/12/05	KWG0505901	
Trichlorofluoromethane	ND U	4.8	0.83	1	04/11/05	04/12/05	KWG0505901	
Trichlorotrifluoroethane	ND U	4.8	0.84	1	04/11/05	04/12/05	KWG0505901	
Acetone	ND U	19	12	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethene	ND U	4.8	0.81	1	04/11/05	04/12/05	KWG0505901	
Methyl Acetate	ND U	4.8	0.84	1	04/11/05	04/12/05	KWG0505901	
Carbon Disulfide	ND U	4.8	1.8	1	04/11/05	04/12/05	KWG0505901	
Diisopropyl Ether	ND U	9.5	0.39	1	04/11/05	04/12/05	KWG0505901	
Methylene Chloride	ND U	9.5	2.9	1	04/11/05	04/12/05	KWG0505901	
Methyl tert-Butyl Ether	ND U	4.8	0.74	1	04/11/05	04/12/05	KWG0505901	
trans-1,2-Dichloroethene	ND U	4.8	0.83	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethane	ND U	4.8	0.89	1	04/11/05	04/12/05	KWG0505901	
2-Butanone (MEK)	ND U	19	14	1	04/11/05	04/12/05	KWG0505901	
cis-1,2-Dichloroethene	ND U	4.8	0.95	1	04/11/05	04/12/05	KWG0505901	
Chloroform	ND U	4.8	0.65	1	04/11/05	04/12/05	KWG0505901	
1,1,1-Trichloroethane (TCA)	ND U	4.8	0.65	1	04/11/05	04/12/05	KWG0505901	
Cyclohexane	ND U UJ	4.8	0.77	1	04/11/05	04/12/05	KWG0505901	
Carbon Tetrachloride	ND U	4.8	0.69	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloroethane (EDC)	ND U	4.8	0.77	1	04/11/05	04/12/05	KWG0505901	
Benzene	ND U	4.8	0.90	1	04/11/05	04/12/05	KWG0505901	
Trichloroethene (TCE)	ND U	4.8	0.32	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloropropane	ND U	4.8	0.82	1	04/11/05	04/12/05	KWG0505901	
Bromodichloromethane	ND U	4.8	0.61	1	04/11/05	04/12/05	KWG0505901	
Methylcyclohexane	ND U UJ	4.8	0.81	1	04/11/05	04/12/05	KWG0505901	
2-Hexanone	ND U	19	7.0	1	04/11/05	04/12/05	KWG0505901	
cis-1,3-Dichloropropene	ND U	4.8	0.87	1	04/11/05	04/12/05	KWG0505901	
Toluene	ND U	4.8	0.96	1	04/11/05	04/12/05	KWG0505901	
trans-1,3-Dichloropropene	ND U	4.8	0.69	1	04/11/05	04/12/05	KWG0505901	
1,1,2-Trichloroethane	ND U	4.8	0.79	1	04/11/05	04/12/05	KWG0505901	

Comments:

16/19/01

Page

1 of 2

Analytical Results

Client: Battelle Memorial Institute
Project: Novato Ballfields/G486063

Sample Matrix: Soil

Service Request: K2502505

Date Collected: 04/06/2005

Date Received: 04/07/2005

Units: ug/Kg

Volatile Organic Compounds

Sample Name: TO63-R3-SB02-0-0.5 **K2502505-005**

8260B

Extraction Method: Analysis Method:

 K2502505-005
 Basis:
 Dry

 EPA 5035
 Level:
 Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND	U	19	6.3	1	04/11/05	04/12/05	KWG0505901	
Tetrachloroethene (PCE)	ND	U	4.8	0.36	1	04/11/05	04/12/05	KWG0505901	
Dibromochloromethane	ND	U	4.8	0.69	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromoethane (EDB)	ND	U	19	0.90	1	04/11/05	04/12/05	KWG0505901	
Chlorobenzene	ND	U	4.8	0.80	1	04/11/05	04/12/05	KWG0505901	
Ethylbenzene	ND	U	4.8	0.65	1	04/11/05	04/12/05	KWG0505901	
m,p-Xylenes	ND	U	4.8	1.8	1	04/11/05	04/12/05	KWG0505901	
o-Xylene	ND	U	4.8	0.79	1	04/11/05	04/12/05	KWG0505901	
Styrene	ND	U	4.8	0.83	1	04/11/05	04/12/05	KWG0505901	
Bromoform	ND	U	4.8	0.88	1	04/11/05	04/12/05	KWG0505901	
Isopropylbenzene	ND	U	19	0.78	1	04/11/05	04/12/05	KWG0505901	
1,1,2,2-Tetrachloroethane	ND	U	4.8	0.84	1	04/11/05	04/12/05	KWG0505901	
1,3-Dichlorobenzene	ND	U	4.8	0.81	1	04/11/05	04/12/05	KWG0505901	
1,4-Dichlorobenzene	ND	U	4.8	0.94	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichlorobenzene	ND	U	4.8	0.74	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromo-3-chloropropane	ND	U	19	0.97	1	04/11/05	04/12/05	KWG0505901	
1,2,4-Trichlorobenzene	ND	U	19	0.88	1	04/11/05	04/12/05	KWG0505901	
Naphthalene	ND	U	19	1.1	1	04/11/05	04/12/05	KWG0505901	
Bromochloromethane	ND	U	4.8	1.2	1	04/11/05	04/12/05	KWG0505901	
1,2,3-Trichlorobenzene	ND	U	19	1.1	1	04/11/05	04/12/05	KWG0505901	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	106	70-119	04/12/05	Acceptable
Toluene-d8	108	72-121	04/12/05	Acceptable
4-Bromofluorobenzene	105	66-122	04/12/05	Acceptable

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502505 Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R3-SB03-0-0.5

Lab Code:

K2502505-006

Extraction Method: Analysis Method:

EPA 5035 8260B

Units: ug/Kg Basis: Dry

Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND U	4.6	0.84	1	04/11/05	04/12/05	KWG0505901	
Chloromethane	ND U	4.6	1.2	1	04/11/05	04/12/05	KWG0505901	
Vinyl Chloride	ND U	4.6	0.74	1	04/11/05	04/12/05	KWG0505901	
Bromomethane	ND U UJ	4.6	0.96	1	04/11/05	04/12/05	KWG0505901	
Chloroethane	ND U	4.6	0.94	1	04/11/05	04/12/05	KWG0505901	
Trichlorofluoromethane	ND U	4.6	0.88	1	04/11/05	04/12/05	KWG0505901	
Trichlorotrifluoroethane	ND U	4.6	0.89	1	04/11/05	04/12/05	KWG0505901	
Acetone	ND U	19	12	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethene	ND U	4.6	0.85	1	04/11/05	04/12/05	KWG0505901	
Methyl Acetate	ND U	4.6	0.89	1	04/11/05	04/12/05	KWG0505901	
Carbon Disulfide	ND U	4.6	1.8	1	04/11/05	04/12/05	KWG0505901	
Diisopropyl Ether	ND U	9.2	0.41	1	04/11/05	04/12/05	KWG0505901	
Methylene Chloride	ND U	9.2	3.0	1	04/11/05	04/12/05	KWG0505901	
Methyl tert-Butyl Ether	ND U	4.6	0.78	1	04/11/05	04/12/05	KWG0505901	
trans-1,2-Dichloroethene	ND U	4.6	0.88	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethane	ND U	4.6	0.94	1	04/11/05	04/12/05	KWG0505901	
2-Butanone (MEK)	ND U	19	15	1	04/11/05	04/12/05	KWG0505901	
cis-1,2-Dichloroethene	ND U	4.6	1.0	1	04/11/05	04/12/05	KWG0505901	
Chloroform	ND U	4.6	0.69	1	04/11/05	04/12/05	KWG0505901	
1,1,1-Trichloroethane (TCA)	ND U	4.6	0.69	1	04/11/05	04/12/05	KWG0505901	
Cyclohexane	LN U DN	4.6	0.80	1	04/11/05	04/12/05	KWG0505901	
Carbon Tetrachloride	ND U	4.6	0.72	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloroethane (EDC)	ND U	4.6	0.80	1	04/11/05	04/12/05	KWG0505901	
Benzene	ND U	4.6	0.95	1	04/11/05	04/12/05	KWG0505901	
Trichloroethene (TCE)	ND U	4.6	0.34	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloropropane	ND U	4.6	0.86	1	04/11/05	04/12/05	KWG0505901	
Bromodichloromethane	ND U	4.6	0.64	1	04/11/05	04/12/05	KWG0505901	
Methylcyclohexane	ND U UJ	4.6	0.85	1	04/11/05	04/12/05	KWG0505901	
2-Hexanone	ND U	19	7.3	1	04/11/05	04/12/05	KWG0505901	
cis-1,3-Dichloropropene	ND U	4.6	0.91	1	04/11/05	04/12/05	KWG0505901	
Toluene	ND U	4.6	1.1	1	04/11/05	04/12/05	KWG0505901	
trans-1,3-Dichloropropene	ND U	4.6	0.72	1	04/11/05	04/12/05	KWG0505901	
1,1,2-Trichloroethane	ND U	4.6	0.83	1	04/11/05	04/12/05	KWG0505901	

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502505

Date Collected: 04/06/2005 Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R3-SB03-0-0.5

Lab Code:

K2502505-006

EPA 5035

Units: ug/Kg Basis: Dry

Level: Low

Extraction Method: 8260B **Analysis Method:**

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND U	19	6.6	1	04/11/05	04/12/05	KWG0505901	
Tetrachloroethene (PCE)	ND U	4.6	0.37	1	04/11/05	04/12/05	KWG0505901	
Dibromochloromethane	ND U	4.6	0.72	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromoethane (EDB)	ND U	19	0.95	1	04/11/05	04/12/05	KWG0505901	
Chlorobenzene	ND U	4.6	0.84	1	04/11/05	04/12/05	KWG0505901	
Ethylbenzene	ND U	4.6	0.69	1	04/11/05	04/12/05	KWG0505901	
m,p-Xylenes	ND U	4.6	1.8	1	04/11/05	04/12/05	KWG0505901	
o-Xylene	ND U	4.6	0.83	1	04/11/05	04/12/05	KWG0505901	
Styrene	ND U	4.6	0.88	1	04/11/05	04/12/05	KWG0505901	
Bromoform	ND U	4.6	0.92	1	04/11/05	04/12/05	KWG0505901	
Isopropylbenzene	ND U	. 19	0.82	1	04/11/05	04/12/05	KWG0505901	
1,1,2,2-Tetrachloroethane	ND U	4.6	0.89	1	04/11/05	04/12/05	KWG0505901	
1,3-Dichlorobenzene	ND U	4.6	0.85	1	04/11/05	04/12/05	KWG0505901	
1,4-Dichlorobenzene	ND U	4.6	0.98	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichlorobenzene	ND U	4.6	0.78	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromo-3-chloropropane	ND U	19	1.1	1	04/11/05	04/12/05	KWG0505901	
1,2,4-Trichlorobenzene	ND U	19	0.92	1	04/11/05	04/12/05	KWG0505901	
Naphthalene	ND U	19	1.1	1	04/11/05	04/12/05	KWG0505901	
Bromochloromethane	ND U	4.6	1.2	1	04/11/05	04/12/05	KWG0505901	
1,2,3-Trichlorobenzene	ND U	19	1.1	1	04/11/05	04/12/05	KWG0505901	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	106	70-119	04/12/05	Acceptable
Toluene-d8	108	72-121	04/12/05	Acceptable
4-Bromofluorobenzene	104	66-122	04/12/05	Acceptable

Elia los Comments:

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502505 Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R4-SB03-0-0.5

Lab Code:

K2502505-007

Extraction Method:

EPA 5035

Analysis Method:

8260B

Units: ug/Kg Basis: Dry Level: Low

Ti-dun adiam

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND	U	4.8	0.76	1	04/11/05	04/12/05	KWG0505901	
Chloromethane	ND	U	4.8	1.1	1	04/11/05	04/12/05	KWG0505901	
Vinyl Chloride	ND	U	4.8	0.67	1	04/11/05	04/12/05	KWG0505901	
Bromomethane	ND	U UJ	4.8	0.87	1	04/11/05	04/12/05	KWG0505901	
Chloroethane	ND		4.8	0.85	1	04/11/05	04/12/05	KWG0505901	
Trichlorofluoromethane	ND	U	4.8	0.79	1.	04/11/05	04/12/05	KWG0505901	
Trichlorotrifluoroethane	ND	U	4.8	0.80	1	04/11/05	04/12/05	KWG0505901	
Acetone	ND	U	19	11	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethene	ND	U	4.8	0.77	1	04/11/05	04/12/05	KWG0505901	
Methyl Acetate	ND	U	4.8	0.80	1	04/11/05	04/12/05	KWG0505901	
Carbon Disulfide	ND	U	4.8	1.7	1	04/11/05	04/12/05	KWG0505901	
Diisopropyl Ether	ND	U	9.5	0.37	1	04/11/05	04/12/05	KWG0505901	
Methylene Chloride	ND	U	9.5	2.7	1	04/11/05	04/12/05	KWG0505901	
Methyl tert-Butyl Ether	ND	U	4.8	0.71	1	04/11/05	04/12/05	KWG0505901	
trans-1,2-Dichloroethene	ND	U	4.8	0.79	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethane	ND	U	4.8	0.85	1	04/11/05	04/12/05	KWG0505901	
2-Butanone (MEK)	ND	U	19	13	1	04/11/05	04/12/05	KWG0505901	
cis-1,2-Dichloroethene	ND	U	4.8	0.90	1	04/11/05	04/12/05	KWG0505901	
Chloroform	ND	U	4.8	0.62	1	04/11/05	04/12/05	KWG0505901	
1,1,1-Trichloroethane (TCA)	ND		4.8	0.62	1	04/11/05	04/12/05	KWG0505901	
Cyclohexane	ND	U UJ	4.8	0.73	1	04/11/05	04/12/05	KWG0505901	
Carbon Tetrachloride	ND	U	4.8	0.65	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloroethane (EDC)	ND	U	4.8	0.73	1	04/11/05	04/12/05	KWG0505901	
Benzene	ND	U	4.8	0.86	1	04/11/05	04/12/05	KWG0505901	
Trichloroethene (TCE)	ND		4.8	0.31	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloropropane	ND	U	4.8	0.78	1	04/11/05	04/12/05	KWG0505901	
Bromodichloromethane	ND		4.8	0.58	1	04/11/05	04/12/05	KWG0505901	
Methylcyclohexane	ND		4.8	0.77	1	04/11/05	04/12/05	KWG0505901	
2-Hexanone	ND		19	6.6	1	04/11/05	04/12/05	KWG0505901	
cis-1,3-Dichloropropene	ND	U	4.8	0.83	1	04/11/05	04/12/05	KWG0505901	
Toluene	ND		4.8	0.91	1	04/11/05	04/12/05	KWG0505901	
trans-1,3-Dichloropropene	ND		4.8	0.65	1	04/11/05	04/12/05	KWG0505901	
1,1,2-Trichloroethane	ND	U	4.8	0.75	1	04/11/05	04/12/05	KWG0505901	

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502505 Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R4-SB03-0-0.5

Lab Code:

K2502505-007

Extraction Method: Analysis Method:

EPA 5035

8260B

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND U	19	6.0	1	04/11/05	04/12/05	KWG0505901	
Tetrachloroethene (PCE)	ND U	4.8	0.34	1	04/11/05	04/12/05	KWG0505901	
Dibromochloromethane	ND U	4.8	0.65	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromoethane (EDB)	ND U	19	0.86	1	04/11/05	04/12/05	KWG0505901	
Chlorobenzene	ND U	4.8	0.76	1	04/11/05	04/12/05	KWG0505901	
Ethylbenzene	ND U	4.8	0.62	1	04/11/05	04/12/05	KWG0505901	
m,p-Xylenes	ND U	4.8	1.7	1	04/11/05	04/12/05	KWG0505901	
o-Xylene	ND U	4.8	0.75	1	04/11/05	04/12/05	KWG0505901	
Styrene	ND U	4.8	0.79	1	04/11/05	04/12/05	KWG0505901	
Bromoform	ND U	4.8	0.84	1	04/11/05	04/12/05	KWG0505901	
Isopropylbenzene	ND U	19	0.74	1	04/11/05	04/12/05	KWG0505901	
1,1,2,2-Tetrachloroethane	ND U	4.8	0.80	1	04/11/05	04/12/05	KWG0505901	
1,3-Dichlorobenzene	ND U	4.8	0.77	1	04/11/05	04/12/05	KWG0505901	
1,4-Dichlorobenzene	ND U	4.8	0.89	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichlorobenzene	ND U	4.8	0.71	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromo-3-chloropropane	ND U	19	0.92	1	04/11/05	04/12/05	KWG0505901	
1.2.4-Trichlorobenzene	ND U	19	0.84	1	04/11/05	04/12/05	KWG0505901	
Naphthalene	ND U	19	0.97	1	04/11/05	04/12/05	KWG0505901	
Bromochloromethane	ND U	4.8	1.1	1	04/11/05	04/12/05	KWG0505901	
1,2,3-Trichlorobenzene	ND U	19	0.98	1	04/11/05	04/12/05	KWG0505901	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	106	70-119	04/12/05	Acceptable	
Toluene-d8	108	72-121	04/12/05	Acceptable	
4-Bromofluorobenzene	103	66-122	04/12/05	Acceptable	

Comments:

fc/10/01

Analytical Results

Battelle Memorial Institute Client: Novato Ballfields/G486063 Project:

Soil Sample Matrix:

Service Request: K2502505 Date Collected: 04/06/2005 Date Received: 04/07/2005

Volatile Organic Compounds

TO63-R4-SB03-3-4 Sample Name: Lab Code: K2502505-008

EPA 5035 **Extraction Method:** 8260B **Analysis Method:**

Units: ug/Kg Basis: Dry Level: Low

Analysta Nama	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name Dichlorodifluoromethane	ND U	9.0	1.3	1	04/11/05	04/12/05	KWG0505901	
Chloromethane	ND U	9.0	1.8	î	04/11/05	04/12/05	KWG0505901	
Vinyl Chloride	ND U	9.0	1.2	ĺ	04/11/05	04/12/05	KWG0505901	
Bromomethane	ND U UJ	9.0	1.5	1	04/11/05	04/12/05	KWG0505901	
Chloroethane	ND U	9.0	1.5	1	04/11/05	04/12/05	KWG0505901	
Trichlorofluoromethane	ND U	9.0	1.4	1	04/11/05	04/12/05	KWG0505901	
Trichlorotrifluoroethane	ND U	9.0	1.4	1	04/11/05	04/12/05	KWG0505901	
Acetone	ND U	36	18	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethene	ND U	9.0	1.3	1	04/11/05	04/12/05	KWG0505901	
Methyl Acetate	ND U	9.0	1.4	1	04/11/05	04/12/05	KWG0505901	
Carbon Disulfide	ND U	9.0	2.7	1	04/11/05	04/12/05	KWG0505901	
Diisopropyl Ether	ND U	18	0.62	1	04/11/05	04/12/05	KWG0505901	***
Methylene Chloride	ND U	18	4.5	1	04/11/05	04/12/05	KWG0505901	
Methyl tert-Butyl Ether	ND U	9.0	1.2	1	04/11/05	04/12/05	KWG0505901	
trans-1,2-Dichloroethene	ND U	9.0	1.4	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethane	ND U	9.0	1.5	1	04/11/05	04/12/05	KWG0505901	
2-Butanone (MEK)	ND U	36	22	1	04/11/05	04/12/05	KWG0505901	
cis-1,2-Dichloroethene	ND U	9.0	1.5	1	04/11/05	04/12/05	KWG0505901	
Chloroform	ND U	9.0	1.1	1	04/11/05	04/12/05	KWG0505901	
1,1,1-Trichloroethane (TCA)	ND U	9.0	1.1	1	04/11/05	04/12/05	KWG0505901	
Cyclohexane	ND U UJ	9.0	1.3	1	04/11/05	04/12/05	KWG0505901	
Carbon Tetrachloride	ND U	9.0	1.1	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloroethane (EDC)	ND U	9.0	1.3	1	04/11/05	04/12/05	KWG0505901	
Benzene	ND U	9.0	1.5	1	04/11/05	04/12/05	KWG0505901	
Trichloroethene (TCE)	ND U	9.0	0.51	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloropropane	ND U	9.0	1.3	1	04/11/05	04/12/05	KWG0505901	
Bromodichloromethane	ND U	9.0	0.96	1	04/11/05	04/12/05	KWG0505901	
Methylcyclohexane	ND U NJ	9.0	1.3	1	04/11/05	04/12/05	KWG0505901	
2-Hexanone	ND U	36	11	1	04/11/05	04/12/05	KWG0505901	
cis-1,3-Dichloropropene	ND U	9.0	1.4	1	04/11/05	04/12/05	KWG0505901	
Toluene	ND U	9.0	1.6	1	04/11/05	04/12/05	KWG0505901	
trans-1,3-Dichloropropene	ND U	9.0	1.1	1	04/11/05	04/12/05	KWG0505901	
1,1,2-Trichloroethane	ND U	9.0	1.3	1	04/11/05	04/12/05	KWG0505901	

Comments:

Form 1A - Organic Page 1 of 2 Printed: 04/19/2005 12:44:03

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502505

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R4-SB03-3-4

Lab Code:

K2502505-008

EPA 5035

Units: ug/Kg Basis: Dry

Level: Low

Extraction Method: 8260B **Analysis Method:**

Analyta Nama	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name	ND U	36	9.9	1	04/11/05	04/12/05	KWG0505901	
4-Methyl-2-pentanone (MIBK)				1	04/11/05	04/12/05	KWG0505901	
Tetrachloroethene (PCE)	ND U	9.0	0.56	1	04/11/05	04/12/05	KWG0505901	
Dibromochloromethane	ND U	9.0	1.1	1	04/11/03			
1,2-Dibromoethane (EDB)	ND U	36	1.5	1	04/11/05	04/12/05	KWG0505901	
Chlorobenzene	ND U	9.0	1.3	1	04/11/05	04/12/05	KWG0505901	
Ethylbenzene	ND U	9.0	1.1	1	04/11/05	04/12/05	KWG0505901	
m,p-Xylenes	ND U	9.0	2.7	1	04/11/05	04/12/05	KWG0505901	
o-Xylene	ND U	9.0	1.3	1	04/11/05	04/12/05	KWG0505901	
Styrene	ND U	9.0	1.4	1	04/11/05	04/12/05	KWG0505901	
Bromoform	ND U	9.0	1.4	1	04/11/05	04/12/05	KWG0505901	
Isopropylbenzene	ND U	36	1.3	1	04/11/05	04/12/05	KWG0505901	
1,1,2,2-Tetrachloroethane	ND U	9.0	1.4	1	04/11/05	04/12/05	KWG0505901	
1,3-Dichlorobenzene	ND U	9.0	1.3	1	04/11/05	04/12/05	KWG0505901	
1,4-Dichlorobenzene	ND U	9.0	1.5	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichlorobenzene	ND U	9.0	1.2	ī	04/11/05	04/12/05	KWG0505901	
1.2-Dibromo-3-chloropropane	ND U	36	1.6	1	04/11/05	04/12/05	KWG0505901	
1.2.4-Trichlorobenzene	ND U	36	1.4	1	04/11/05	04/12/05	KWG0505901	
Naphthalene	ND U	36	1.6	1	04/11/05	04/12/05	KWG0505901	
Bromochloromethane	ND U	9.0	1.8	1	04/11/05	04/12/05	KWG0505901	
1,2,3-Trichlorobenzene	ND U	36	1.7	1	04/11/05	04/12/05	KWG0505901	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	107	70-119	04/12/05	Acceptable	
Toluene-d8	106	72-121	04/12/05	Acceptable	
4-Bromofluorobenzene	103	66-122	04/12/05	Acceptable	

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502505

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R4-SB02-0-0.5

Lab Code:

K2502505-009

Extraction Method: Analysis Method:

EPA 5035

8260B

Units: ug/Kg Basis: Dry

Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND U	4.6	0.78	1	04/11/05	04/12/05	KWG0505901	
Chloromethane	ND U	4.6	1.1	1	04/11/05	04/12/05	KWG0505901	
Vinyl Chloride	ND U	4.6	0.69	1	04/11/05	04/12/05	KWG0505901	
Bromomethane	ND U UJ	4.6	0.89	1	04/11/05	04/12/05	KWG0505901	
Chloroethane	ND U	4.6	0.87	1	04/11/05	04/12/05	KWG0505901	
Trichlorofluoromethane	ND U	4.6	0.82	1	04/11/05	04/12/05	KWG0505901	
Trichlorotrifluoroethane	ND U	4.6	0.83	1	04/11/05	04/12/05	KWG0505901	
Acetone	ND U	19	12	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethene	ND U	4.6	0.79	1	04/11/05	04/12/05	KWG0505901	
Methyl Acetate	ND U	4.6	0.83	1	04/11/05	04/12/05	KWG0505901	
Carbon Disulfide	ND U	4.6	1.7	1	04/11/05	04/12/05	KWG0505901	
Diisopropyl Ether	ND U	9.1	0.38	1	04/11/05	04/12/05	KWG0505901	
Methylene Chloride	ND U	9.1	2.8	1	04/11/05	04/12/05	KWG0505901	
Methyl tert-Butyl Ether	ND U	4.6	0.73	1	04/11/05	04/12/05	KWG0505901	
trans-1,2-Dichloroethene	ND U	4.6	0.82	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethane	ND U	4.6	0.87	1	04/11/05	04/12/05	KWG0505901	
2-Butanone (MEK)	ND U	19	14	1	04/11/05	04/12/05	KWG0505901	
cis-1,2-Dichloroethene	ND U	4.6	0.93	1	04/11/05	04/12/05	KWG0505901	
Chloroform	ND U	4.6	0.64	1	04/11/05	04/12/05	KWG0505901	
1,1,1-Trichloroethane (TCA)	ND U	4.6	0.64	1	04/11/05	04/12/05	KWG0505901	
Cyclohexane	ND U UJ	4.6	0.75	1	04/11/05	04/12/05	KWG0505901	
Carbon Tetrachloride	ND U	4.6	0.67	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloroethane (EDC)	ND U	4.6	0.75	1	04/11/05	04/12/05	KWG0505901	
Benzene	ND U	4.6	0.88	1	04/11/05	04/12/05	KWG0505901	
Trichloroethene (TCE)	ND U	4.6	0.32	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloropropane	ND U	4.6	0.80	1	04/11/05	04/12/05	KWG0505901	
Bromodichloromethane	ND U	4.6	0.59	1	04/11/05	04/12/05	KWG0505901	
Methylcyclohexane	ND U UJ	4.6	0.79	1	04/11/05	04/12/05	KWG0505901	
2-Hexanone	ND U	19	6.8	1	04/11/05	04/12/05	KWG0505901	
cis-1,3-Dichloropropene	ND U	4.6	0.85	1	04/11/05	04/12/05	KWG0505901	
Toluene	ND U	4.6	0.94	1	04/11/05	04/12/05	KWG0505901	
trans-1,3-Dichloropropene	ND U	4.6	0.67	1	04/11/05	04/12/05	KWG0505901	
1,1,2-Trichloroethane	ND U	4.6	0.77	1	04/11/05	04/12/05	KWG0505901	

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502505 Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name: Lab Code:

TO63-R4-SB02-0-0.5

Extraction Method: Analysis Method:

EPA 5035

K2502505-009

8260B

Units: ug/Kg Basis: Dry

Level: Low

Dilution Date Date Extraction **Analyte Name** MRL Result Q **MDL Factor** Extracted Analyzed Lot Note 4-Methyl-2-pentanone (MIBK) ND U 19 6.2 1 04/11/05 04/12/05 KWG0505901 Tetrachloroethene (PCE) ND U 4.6 0.35 1 04/11/05 04/12/05 KWG0505901 Dibromochloromethane ND U 4.6 0.67 1 04/11/05 04/12/05 KWG0505901 1,2-Dibromoethane (EDB) 19 1 ND U 0.88 04/11/05 04/12/05 KWG0505901 Chlorobenzene ND U 4.6 0.78 1 KWG0505901 04/11/05 04/12/05 Ethylbenzene KWG0505901 ND U 4.6 0.64 1 04/11/05 04/12/05 m,p-Xylenes ND U 4.6 1.7 1 KWG0505901 04/11/05 04/12/05 o-Xylene ND U 4.6 0.77 1 04/11/05 04/12/05 KWG0505901 Styrene ND U 4.6 0.82 KWG0505901 1 04/11/05 04/12/05 Bromoform ND U 1 4.6 0.86 04/11/05 04/12/05 KWG0505901 Isopropylbenzene ND U 04/11/05 19 0.76 1 04/12/05 KWG0505901 1,1,2,2-Tetrachloroethane KWG0505901 ND U 4.6 0.83 1 04/11/05 04/12/05 1,3-Dichlorobenzene ND U 4.6 0.79 1 KWG0505901 04/11/05 04/12/05 1,4-Dichlorobenzene ND U 4.6 0.92 1 04/11/05 KWG0505901 04/12/05 1,2-Dichlorobenzene ND U 4.6 0.73 1 KWG0505901 04/11/05 04/12/05 1,2-Dibromo-3-chloropropane 19 ND U 0.95 1 04/11/05 04/12/05 KWG0505901 1,2,4-Trichlorobenzene ND U 19 0.86 1 04/11/05 04/12/05 KWG0505901 Naphthalene ND U 0.99 19 1 04/11/05 04/12/05 KWG0505901 Bromochloromethane ND U 4.6 1.1 1 04/11/05 04/12/05 KWG0505901 1,2,3-Trichlorobenzene ND U 19 1.0 1 04/11/05 KWG0505901 04/12/05

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	108	70-119	04/12/05	Acceptable	
Toluene-d8	108	72-121	04/12/05	Acceptable	
4-Bromofluorobenzene	111	66-122	04/12/05	Acceptable	

Comments:

Printed: 04/19/2005 12:44:06

u-\Stealth\Crvstal mt\Form1m mt

Merged

Form 1A - Organic 040

Page 2 of 2

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502505

Date Collected: 04/06/2005

Date Received: 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R4-SB01-0-0.5

Lab Code:

K2502505-010

Extraction Method: Analysis Method:

EPA 5035 8260B Units: ug/Kg Basis: Dry

Level: Low

Analyte Name Result Q MRL MDL Factor Extracted Analyzed Lot Note Dichlorodifluoromethane ND U 4.3 0.76 1 04/11/05 04/12/05 KWG05059901 Chloromethane ND U 4.3 1.1 1 04/11/05 04/12/05 KWG0505901 Bromomethane ND U 4.3 0.87 1 04/11/05 04/12/05 KWG0505901 Chloroethane ND U 4.3 0.87 1 04/11/05 04/12/05 KWG0505901 Trichlorofluoromethane ND U 4.3 0.85 1 04/11/05 04/12/05 KWG0505901 Trichlorotrifluoroethane ND U 4.3 0.80 1 04/11/05 04/12/05 KWG0505901 Trichlorotrifluoroethane ND U 4.3 0.80 1 04/11/05 04/12/05 KWG0505901 Acetone ND U 4.3 0.80 1 04/11/05 04/12/05 KWG0505901 Methyl Acetate ND U <th></th> <th></th> <th></th> <th></th> <th>Dilution</th> <th>Date</th> <th>Date</th> <th>Extraction</th> <th></th>					Dilution	Date	Date	Extraction	
Chloromethane ND U 4.3 0.68 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.88 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.88 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.85 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.85 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.89 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.89 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.89 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.80 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.80 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.80 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.77 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.77 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.80 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.30 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.30 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.30 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.71 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.71 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.79 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.79 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.85 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 ND U 4	Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Vinyl Chloride ND U 4.3 0.68 1 04/11/05 04/12/05 KWG0505901 Bromomethane ND U	Dichlorodifluoromethane	ND U	4.3	0.76	1	04/11/05	04/12/05		
ND U 1	Chloromethane	ND U	4.3	1.1	1	04/11/05	04/12/05	KWG0505901	
Chloroethane ND U 4.3 0.85 1 04/11/05 04/12/05 KWG0505901 Trichloroffluoromethane ND U 4.3 0.79 1 04/11/05 04/12/05 KWG0505901 Trichlorotrifluoroethane ND U 4.3 0.80 1 04/11/05 04/12/05 KWG0505901 Acetone ND U 18 11 1 04/11/05 04/12/05 KWG05059901 J-Dichloroethene ND U 4.3 0.77 1 04/11/05 04/12/05 KWG05059901 Methyl Acetate ND U 4.3 0.80 1 04/11/05 04/12/05 KWG05059901 Methyl Acetate ND U 4.3 0.80 1 04/11/05 04/12/05 KWG05059901 Methyl Acetate ND U 4.3 0.80 1 04/11/05 04/12/05 KWG05059901 Methyl Acetate ND U 4.3 0.37 1 04/11/05	Vinyl Chloride	ND U	4.3	0.68	1	04/11/05	04/12/05	KWG0505901	
Trichlorofluoromethane ND U 4.3 0.79 1 04/11/05 KWG0505901 Trichlorotrifluoroethane ND U 4.3 0.80 1 04/11/05 04/12/05 KWG0505901 Acetone ND U 18 11 1 04/11/05 04/12/05 KWG0505901 1,1-Dichloroethene ND U 4.3 0.77 1 04/11/05 04/12/05 KWG0505901 Methyl Acetate ND U 4.3 0.80 1 04/11/05 04/12/05 KWG0505901 Carbon Disulfide ND U 4.3 1.7 1 04/11/05 04/12/05 KWG0505901 Diisopropyl Ether ND U 8.6 0.37 1 04/11/05 04/12/05 KWG0505901 Methylene Chloride ND U 8.6 2.8 1 04/11/05 04/12/05 KWG0505901 Methyl tert-Butyl Ether ND U 4.3 0.71 1 04/11/05 04/12/05 KWG0505901 trans-1,2-Dichloroethane ND U 4.3	Bromomethane	ND U UJ	4.3	0.87	1	04/11/05	04/12/05	KWG0505901	
Trichlorotrifluoroethane ND U 4.3 0.80 1 04/11/05 04/12/05 KWG0505901 Acetone ND U 18 11 1 04/11/05 04/12/05 KWG0505901 1,1-Dichloroethene ND U 4.3 0.77 1 04/11/05 04/12/05 KWG0505901 Methyl Acetate ND U 4.3 0.80 1 04/11/05 04/12/05 KWG0505901 Carbon Disulfide ND U 4.3 1.7 1 04/11/05 04/12/05 KWG0505901 Diisopropyl Ether ND U 8.6 0.37 1 04/11/05 04/12/05 KWG0505901 Methylene Chloride ND U 8.6 2.8 1 04/11/05 04/12/05 KWG0505901 Methylene Chloride ND U 4.3 0.71 1 04/11/05 04/12/05 KWG0505901 Methyl tert-Butyl Ether ND U 4.3 0.79 1 04/11/05<	Chloroethane	ND U	4.3	0.85	1	04/11/05	04/12/05	KWG0505901	
Acetone ND U 18 11 1 04/11/05 04/12/05 KWG0505901 1,1-Dichloroethene ND U 4.3 0.77 1 04/11/05 04/12/05 KWG0505901 Methyl Acetate ND U 4.3 0.80 1 04/11/05 04/12/05 KWG0505901 Carbon Disulfide ND U 4.3 1.7 1 04/11/05 04/12/05 KWG0505901 Diisopropyl Ether ND U 8.6 0.37 1 04/11/05 04/12/05 KWG0505901 Methylene Chloride ND U 8.6 2.8 1 04/11/05 04/12/05 KWG0505901 Methylene Chloride ND U 4.3 0.71 1 04/11/05 04/12/05 KWG0505901 Methylene Chloride ND U 4.3 0.71 1 04/11/05 04/12/05 KWG0505901 Methylene Chloride ND U 4.3 0.71 1 04/11/05 04/12/05 KWG0505901 I,1-Dichloroethene ND U 4.3 0.79 1 04/11/05 04/12/05 KWG0505901 I,1-Dichloroethane ND U 4.3 0.85 1 04/11/05 04/12/05 KWG0505901 2-Butanone (MEK) ND U 18 13 1 04/11/05 04/12/05 KWG0505901 Cis-1,2-Dichloroethene ND U 4.3 0.90 1 04/11/05 04/12/05 KWG0505901 Chloroform ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 Chloroform ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 Cyclohexane ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.66 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.66 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.86 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.86 1 04/11/05 04/12/05 KWG0505901	Trichlorofluoromethane	ND U	4.3	0.79	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethene ND U 4.3 0.77 1 04/11/05 04/12/05 KWG0505901 Methyl Acetate ND U 4.3 0.80 1 04/11/05 04/12/05 KWG0505901 Carbon Disulfide ND U 4.3 1.7 1 04/11/05 04/12/05 KWG0505901 Diisopropyl Ether ND U 8.6 0.37 1 04/11/05 04/12/05 KWG0505901 Methylene Chloride ND U 8.6 2.8 1 04/11/05 04/12/05 KWG0505901 Methyl tert-Butyl Ether ND U 4.3 0.71 1 04/11/05 04/12/05 KWG0505901 trans-1,2-Dichloroethene ND U 4.3 0.79 1 04/11/05 04/12/05 KWG0505901 1,1-Dichloroethane ND U 4.3 0.85 1 04/11/05 04/12/05 KWG0505901 2-Butanone (MEK) ND U 4.3 0.85 1 04/11/05 04/12/05 KWG0505901 Cis-1,2-Dichloroethene ND U	Trichlorotrifluoroethane	ND U	4.3	0.80	1	04/11/05	04/12/05	KWG0505901	
Methyl Acetate ND U 4.3 0.80 1 04/11/05 04/12/05 KWG0505901 Carbon Disulfide ND U 4.3 1.7 1 04/11/05 04/12/05 KWG0505901 Diisopropyl Ether ND U 8.6 0.37 1 04/11/05 04/12/05 KWG0505901 Methylene Chloride ND U 8.6 2.8 1 04/11/05 04/12/05 KWG0505901 Methyl tert-Butyl Ether ND U 4.3 0.71 1 04/11/05 04/12/05 KWG0505901 trans-1,2-Dichloroethene ND U 4.3 0.79 1 04/11/05 04/12/05 KWG0505901 1,1-Dichloroethane ND U 4.3 0.85 1 04/11/05 04/12/05 KWG0505901 2-Butanone (MEK) ND U 4.3 0.85 1 04/11/05 04/12/05 KWG0505901 Cis-1,2-Dichloroethene ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 Chloroform ND U <	Acetone	ND U	18	11	1	04/11/05	04/12/05	KWG0505901	
Carbon Disulfide ND U 4.3 1.7 1 04/11/05 04/12/05 KWG0505901 Diisopropyl Ether ND U 8.6 0.37 1 04/11/05 04/12/05 KWG0505901 Methylene Chloride ND U 8.6 2.8 1 04/11/05 04/12/05 KWG0505901 Methyl tert-Butyl Ether ND U 4.3 0.71 1 04/11/05 04/12/05 KWG0505901 trans-1,2-Dichloroethene ND U 4.3 0.79 1 04/11/05 04/12/05 KWG0505901 1,1-Dichloroethane ND U 4.3 0.85 1 04/11/05 04/12/05 KWG0505901 2-Butanone (MEK) ND U 18 13 1 04/11/05 04/12/05 KWG0505901 cis-1,2-Dichloroethene ND U 4.3 0.90 1 04/11/05 04/12/05 KWG0505901 Chloroform ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 Cyclohexane ND U 4.3	1,1-Dichloroethene	ND U	4.3	0.77	1	04/11/05	04/12/05	KWG0505901	
Diisopropyl Ether ND U 8.6 0.37 1 04/11/05 04/12/05 KWG0505901 Methylene Chloride ND U 8.6 2.8 1 04/11/05 04/12/05 KWG0505901 Methyl tert-Butyl Ether ND U 4.3 0.71 1 04/11/05 04/12/05 KWG0505901 trans-1,2-Dichloroethene ND U 4.3 0.79 1 04/11/05 04/12/05 KWG0505901 1,1-Dichloroethane ND U 4.3 0.85 1 04/11/05 04/12/05 KWG0505901 2-Butanone (MEK) ND U 18 13 1 04/11/05 04/12/05 KWG0505901 cis-1,2-Dichloroethene ND U 4.3 0.90 1 04/11/05 04/12/05 KWG0505901 Chloroform ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 1,1,1-Trichloroethane (TCA) ND U 4.3 0.62 1 04/11/05 04/12/05 KWG05005901 Carbon Tetrachloride ND	Methyl Acetate	ND U	4.3	0.80	1	04/11/05	04/12/05		
Methylene Chloride ND U 8.6 2.8 1 04/11/05 04/12/05 KWG0505901 Methyl tert-Butyl Ether ND U 4.3 0.71 1 04/11/05 04/12/05 KWG0505901 trans-1,2-Dichloroethene ND U 4.3 0.79 1 04/11/05 04/12/05 KWG0505901 1,1-Dichloroethane ND U 4.3 0.85 1 04/11/05 04/12/05 KWG0505901 2-Butanone (MEK) ND U 18 13 1 04/11/05 04/12/05 KWG0505901 cis-1,2-Dichloroethene ND U 4.3 0.90 1 04/11/05 04/12/05 KWG0505901 Chloroform ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 1,1,1-Trichloroethane (TCA) ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 Cyclohexane ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U	Carbon Disulfide	ND U	4.3	1.7	1	04/11/05	04/12/05	KWG0505901	
Methyl tert-Butyl Ether ND U 4.3 0.71 1 04/11/05 04/12/05 KWG0505901 trans-1,2-Dichloroethene ND U 4.3 0.79 1 04/11/05 04/12/05 KWG0505901 1,1-Dichloroethane ND U 4.3 0.85 1 04/11/05 04/12/05 KWG0505901 2-Butanone (MEK) ND U 18 13 1 04/11/05 04/12/05 KWG0505901 cis-1,2-Dichloroethene ND U 4.3 0.90 1 04/11/05 04/12/05 KWG0505901 Chloroform ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 1,1,1-Trichloroethane (TCA) ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 Cyclohexane ND U 4.3 0.73 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 Benzene ND U <td< td=""><td>Diisopropyl Ether</td><td>ND U</td><td>8.6</td><td>0.37</td><td>1</td><td>04/11/05</td><td>04/12/05</td><td>KWG0505901</td><td></td></td<>	Diisopropyl Ether	ND U	8.6	0.37	1	04/11/05	04/12/05	KWG0505901	
Methyl tert-Butyl Ether ND U 4.3 0.71 1 04/11/05 04/12/05 KWG0505901 trans-1,2-Dichloroethene ND U 4.3 0.79 1 04/11/05 04/12/05 KWG0505901 1,1-Dichloroethane ND U 4.3 0.85 1 04/11/05 04/12/05 KWG0505901 2-Butanone (MEK) ND U 18 13 1 04/11/05 04/12/05 KWG0505901 cis-1,2-Dichloroethene ND U 4.3 0.90 1 04/11/05 04/12/05 KWG0505901 Chloroform ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 1,1,1-Trichloroethane (TCA) ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 Cyclohexane ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.73 1	Methylene Chloride	ND U	8.6	2.8	1	04/11/05	04/12/05	KWG0505901	
1,1-Dichloroethane 1,1-Dichloroethane 2-Butanone (MEK) ND U 18 13 1 04/11/05 04/12/05 KWG0505901 Cis-1,2-Dichloroethene ND U 4.3 0.90 1 04/11/05 04/12/05 KWG0505901 Chloroform ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 1,1,1-Trichloroethane (TCA) ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 Cyclohexane ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 1,2-Dichloroethane (EDC) ND U 4.3 0.73 1 04/11/05 04/12/05 KWG0505901 1,2-Dichloroethane (EDC) ND U 4.3 0.73 1 04/11/05 04/12/05 KWG0505901 CWG0505901		ND U	4.3	0.71	1	04/11/05	04/12/05	KWG0505901	
2-Butanone (MEK) ND U 18 13 1 04/11/05 04/12/05 KWG0505901 cis-1,2-Dichloroethene ND U 4.3 0.90 1 04/11/05 04/12/05 KWG0505901 Chloroform ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 1,1,1-Trichloroethane (TCA) ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 Cyclohexane ND U 4.3 0.73 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 1,2-Dichloroethane (EDC) ND U 4.3 0.73 1 04/11/05 04/12/05 KWG0505901 Renzene ND U 4.3 0.86 1 04/11/05 04/12/05 KWG0505901 KWG0505901	trans-1,2-Dichloroethene	ND U	4.3	0.79	1	04/11/05	04/12/05	KWG0505901	
Cis-1,2-Dichloroethene ND U 4.3 0.90 1 04/11/05 04/12/05 KWG0505901 Chloroform ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 1,1,1-Trichloroethane (TCA) ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 Cyclohexane ND U 4.3 0.73 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 1,2-Dichloroethane (EDC) ND U 4.3 0.73 1 04/11/05 04/12/05 KWG0505901 Benzene ND U 4.3 0.86 1 04/11/05 04/12/05 KWG0505901	1,1-Dichloroethane	ND U			1	04/11/05			
Chloroform ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 1,1,1-Trichloroethane (TCA) ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 Cyclohexane ND U 4.3 0.73 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 1,2-Dichloroethane (EDC) ND U 4.3 0.73 1 04/11/05 04/12/05 KWG0505901 Renzene ND U 4.3 0.86 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.73 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.73 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.73 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.73 1 04/11/05 04/12/05 CWG0505901 Carbon Tetrachloride ND U 4.3 0.73 1 04/11/05 04/12/05 CWG0505901	2-Butanone (MEK)	ND U	18	13	1	04/11/05	04/12/05		
1,1,1-Trichloroethane (TCA) ND U 4.3 0.62 1 04/11/05 04/12/05 KWG0505901 Cyclohexane ND U 4.3 0.73 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 1,2-Dichloroethane (EDC) ND U 4.3 0.73 1 04/11/05 04/12/05 KWG0505901 Benzene ND U 4.3 0.86 1 04/11/05 04/12/05 KWG0505901	cis-1,2-Dichloroethene	ND U	4.3	0.90	1	04/11/05	04/12/05	KWG0505901	
Cyclohexane ND U U I 4.3 0.73 1 04/11/05 04/12/05 KWG0505901 Carbon Tetrachloride ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 1,2-Dichloroethane (EDC) ND U 4.3 0.73 1 04/11/05 04/12/05 KWG0505901 Benzene ND U 4.3 0.86 1 04/11/05 04/12/05 KWG0505901	Chloroform	ND U	4.3	0.62	1	04/11/05		KWG0505901	
Carbon Tetrachloride ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901 1,2-Dichloroethane (EDC) ND U 4.3 0.73 1 04/11/05 04/12/05 KWG0505901 Benzene ND U 4.3 0.86 1 04/11/05 04/12/05 KWG0505901	1,1,1-Trichloroethane (TCA)	ND U	4.3	0.62	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloroethane (EDC) ND U 4.3 0.73 1 04/11/05 04/12/05 KWG0505901 Benzene ND U 4.3 0.86 1 04/11/05 04/12/05 KWG0505901	Cyclohexane	ND U UJ	4.3	0.73	1	04/11/05	04/12/05	KWG0505901	
Benzene ND U 4.3 0.86 1 04/11/05 04/12/05 KWG0505901	Carbon Tetrachloride	ND U	4.3	0.65	1	04/11/05	04/12/05	KWG0505901	
	1,2-Dichloroethane (EDC)	ND U	4.3	0.73	1	04/11/05	04/12/05		
	Benzene	ND U	4.3	0.86	1	04/11/05	04/12/05	KWG0505901	
Trichloroethene (TCE) ND U 4.3 0.31 1 04/11/05 04/12/05 KWG0505901	Trichloroethene (TCE)	ND U	4.3	0.31	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichloropropane ND U 4.3 0.78 1 04/11/05 04/12/05 KWG0505901	1,2-Dichloropropane	ND U	4.3	0.78	1	04/11/05	04/12/05	KWG0505901	
Bromodichloromethane ND U 4.3 0.58 1 04/11/05 04/12/05 KWG0505901	Bromodichloromethane	ND U	4.3	0.58	1	04/11/05	04/12/05	KWG0505901	
Methylcyclohexane ND U UJ 4.3 0.77 1 04/11/05 04/12/05 KWG0505901	Methylcyclohexane	ND U UJ	4.3	0.77	1	04/11/05	04/12/05	KWG0505901	
2-Hexanone ND U 18 6.6 1 04/11/05 04/12/05 KWG0505901		ND U	18	6.6	1	04/11/05	04/12/05	KWG0505901	
cis-1,3-Dichloropropene ND U 4.3 0.83 1 04/11/05 04/12/05 KWG0505901	cis-1,3-Dichloropropene	ND U	4.3	0.83	1	04/11/05	04/12/05	KWG0505901	
Toluene ND U 4.3 0.91 1 04/11/05 04/12/05 KWG0505901	Toluene				1	04/11/05			
trans-1,3-Dichloropropene ND U 4.3 0.65 1 04/11/05 04/12/05 KWG0505901	trans-1,3-Dichloropropene	ND U	4.3	0.65	1	04/11/05	04/12/05		
1,1,2-Trichloroethane ND U 4.3 0.75 1 04/11/05 04/12/05 KWG0505901	1,1,2-Trichloroethane	ND U	4.3	0.75	1	04/11/05	04/12/05	KWG0505901	

Comments:

16/19/08

DD 477100

Analytical Results

Client: Project: Battelle Memorial Institute Novato Ballfields/G486063

Sample Matrix:

Soil

Service Request: K2502505

Date Collected: 04/06/2005 **Date Received:** 04/07/2005

Volatile Organic Compounds

Sample Name:

TO63-R4-SB01-0-0.5

Lab Code:

K2502505-010

Extraction Method: EPA 5035

Units: ug/Kg Basis: Dry

Level: Low

Extraction waterou.	111111111111111111111111111111111111111
Analysis Method:	8260B

					Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
4-Methyl-2-pentanone (MIBK)	ND	U	18	6.0	1	04/11/05	04/12/05	KWG0505901	
Tetrachloroethene (PCE)	ND	U	4.3	0.34	1	04/11/05	04/12/05	KWG0505901	
Dibromochloromethane	ND	U	4.3	0.65	.1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromoethane (EDB)	ND	U	18	0.86	1	04/11/05	04/12/05	KWG0505901	
Chlorobenzene	ND	U	4.3	0.76	1	04/11/05	04/12/05	KWG0505901	
Ethylbenzene	ND	U	4.3	0.62	1	04/11/05	04/12/05	KWG0505901	
m,p-Xylenes	ND	U	4.3	1.7	1	04/11/05	04/12/05	KWG0505901	
o-Xylene	ND	U	4.3	0.75	1	04/11/05	04/12/05	KWG0505901	
Styrene	ND	U	4.3	0.79	1	04/11/05	04/12/05	KWG0505901	
Bromoform	ND	U	4.3	0.84	1	04/11/05	04/12/05	KWG0505901	
Isopropylbenzene	ND	U	18	0.74	1	04/11/05	04/12/05	KWG0505901	
1,1,2,2-Tetrachloroethane	ND	U	4.3	0.80	1	04/11/05	04/12/05	KWG0505901	
1,3-Dichlorobenzene	ND	U	4.3	0.77	1	04/11/05	04/12/05	KWG0505901	
1,4-Dichlorobenzene	ND	U	4.3	0.89	1	04/11/05	04/12/05	KWG0505901	
1,2-Dichlorobenzene	ND	U	4.3	0.71	1	04/11/05	04/12/05	KWG0505901	
1,2-Dibromo-3-chloropropane	ND	U	18	0.92	1	04/11/05	04/12/05	KWG0505901	
1,2,4-Trichlorobenzene	ND	U	18	0.84	1	04/11/05	04/12/05	KWG0505901	
Naphthalene	ND	U	18	0.97	1	04/11/05	04/12/05	KWG0505901	
Bromochloromethane	ND	U	4.3	1.1	1	04/11/05	04/12/05	KWG0505901	
1,2,3-Trichlorobenzene	ND	U	18	0.98	1	04/11/05	04/12/05	KWG0505901	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	107	70-119	04/12/05	Acceptable	
Toluene-d8	110	72-121	04/12/05	Acceptable	
4-Bromofluorobenzene	112	66-122	04/12/05	Acceptable	

LDC #: 13575C1

VALIDATION COMPLETENESS WORKSHEET

SDG #: K2502505

Level III/IV

Laboratory: Columbia Analytical Services

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

Reviewer: C 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	4	Sampling dates: 4/4/05
11.	GC/MS Instrument performance check	A	
III.	Initial calibration	W	70 PSD = 30/15. SPCC9
IV.	Continuing calibration	A	70 RSD = 30/15. SPCC 9 700 = 20. ICV = 25/0
V.	Blanks	m	
VI.	Surrogate spikes	AA	chait Diffed
VII.	Matrix spike/Matrix spike duplicates	AN	and client spirition
VIII.	Laboratory control samples	4	LCS/D
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	A	
XI.	Target compound identification	\mathbf{A}	Not reviewed for Level III validation.
XII.	Compound quantitation/CRQLs	\mathcal{F}	Not reviewed for Level III validation.
XIII.	Tentatively identified compounds (TICs)	N	Not reviewed for Level III validation.
XIV.	System performance	F	Not reviewed for Level III validation.
XV.	Overall assessment of data	A	
XVI.	Field duplicates	N	
XVII.	Field blanks	V	:

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

EB = Equipment blank

Validated Samples: ** Indicates sample underwent Level IV validation TO63-R3-SB04-0-0.5 11 21 31 TO63-R3-SB04-2-3** 12 22 32 TO63-R3-SB01-0-0.5 13 23 33 TO63-R3-SB01-4-5 14 24 34 5 TO63-R3-SB02-0-0.5 15 25 35 TO63-R3-SB03-0-0.5** 16 26 36 TO63-R4-SB03-0-0.5 17 27 37 TO63-R4-SB03-3-4 18 28 38 9 TO63-R4-SB02-0-0.5 19 29 39 TO63-R4-SB01-0-0.5** 20 30 40

VALIDATION FINDINGS CHECKLIST

Page: / of Reviewer: 2nd Reviewer:

Method: Volatiles (EPA SW 846 Method 8260B)

(= 1.10.1. 0.10 Method 0200B)					
Validation Area	Ye	s I	10	NA	Findings/Comments
I. Technical holding times					
All technical holding times were met.		1			
Cooler temperature criteria was met.		-			
II. GC/MS Instrument performance check					
Were the BFB performance results reviewed and found to be within the specified criteria?					
Were all samples analyzed within the 12 hour clock criteria?	/	1			-
III. Initial calibration					
Did the laboratory perform a 5 point calibration prior to sample analysis?		1			
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	3				
Was a curve fit used for evaluation?			/		
Did the initial calibration meet the curve fit acceptance criteria of > 0.990?		/			
Were all percent relative standard deviations (%RSD) \leq 30% and relative response factors (RRF) \geq 0.05?					
IV. Continuing calibration					
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?					And the second s
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?		Ī			
Were all percent differences (%D) \leq 25% and relative response factors (RRF) \geq 0.05?			T	1	
V. Blanks	1/_	L			
Was a method blank associated with every sample in this SDG?	/		Τ	Т	
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?					
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		X	Ŧ	1	
VI. Surrogate spikes					
Were all surrogate %R within QC limits?				T	
f the percent recovery (%R) for one or more surrogates was out of QC limits, was a eanalysis performed to confirm samples with %R outside of criteria?				7	
/II. Matrix spike/Matrix spike duplicates			1		
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each natrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.					
Vas a MS/MSD analyzed every 20 samples of each matrix?		_		T	
Vere the MS/MSD percent recoveries (%R) and the relative percent differences RPD) within the QC limits?			_	1	
III. Laboratory control samples				1	
/as an LCS analyzed for this SDG?	7			T	
				1	

VALIDATION FINDINGS CHECKLIST

Page: ≥of-Reviewer: 9 2nd Reviewer: ↓

	T			
Validation Area	Yes	No	NA	Findings/Comments
Was an LCS analyzed per analytical batch?		1		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
IX. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?				
X. Internal standards				
Were internal standard area counts within -50% or +100% of the associated calibration standard?				
Were retention times within <u>+</u> 30 seconds of the associated calibration standard?				
XI. Target compound identification				
Were relative retention times (RRT's) within \pm 0.06 RRT units of the standard?	/			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?				
XII. Compound quantitation/CRQLs				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Tentatively identified compounds (TICs)				
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?				
Were relative intensities of the major ions within \pm 20% between the sample and the reference spectra?			1	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?				
KIV, System performance				
System performance was found to be acceptable.				
(V, Overall assessment of data		,		
Overall assessment of data was found to be acceptable.	\overline{A}		Т	
(VI. Field duplicates				
field duplicate pairs were identified in this SDG.		$\overline{}$		
arget compounds were detected in the field duplicates.			7	
VII. Field blanks				
ield blanks were identified in this SDG.	T	$\overline{\mathcal{A}}$	Т	
arget compounds were detected in the field blanks.	+	4	4	
arget compounds were detected in the field blanks.				

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846 Method 8260B)

A. Chloromethane*	U. 1,1,2-Trichloroethane	O0. 2,2-Dichloropropane	III. n-Butvlbenzene	
B. Bromomethane	V. Benzene	PP. Bromochloromethane	111 12-Dichlorova	
C. Vinyl choride**	W. trans-1,3-Dichloropropene	OO 11-Dichloromoono		UUUU. Isopropyl acohol
D Chloroethana		ייי בייי בייי בייי בייי בייי בייי בייי	KKK. 1,2,4-1 richlorobenzene	EEEE. Acetonitrile
C. Chologinalia	A. Bromoiorm*	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentancne	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG Applonitells
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN 1.2.3-Trichlombenzene	
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,2-Tetrachloroethane	OOO 13 F. Trichlochard	nnnn. 1,4-Dioxane
H. 1,1-Dichloroethene**	BR 1199-Totrochlomothers*		OCC. 1,5,0-1 reflected	III. Isobutyl alcohol
	DO: 1,1,2,2-1 du aci notoeniane	VV. Isopropylbenzene	PPP trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
L., I-Dichloroethane*	CC. Toluene**	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene*	XX 1,2,3-Trichloropropane	RRR m.p-Xvlenes	
K. Chloroform**	EE. Ethylbenzene**	YY n-Propylbenzene		LLLL.
1 2.Dichlomothana	, C LL		ooo o-ykene	MMMM.
r. 1,2-Donoton	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNN
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	dddd
O. Carbon tetrachloride	II. 2-Chloroethylvinyl eiher	CCC. tert-Butylbenzene	WWW. Ethanol	
P. Bromodichloromethane	JJ. Dichlorodifluorome:hane	DDD. 1,2,4-Trimethylbenzene	XXX Disconnot ether	ממסמי.
Q. 1,2-Dichloropropane**	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	VVV tot Button	KKKK.
R. cis-1,3-Dichloropropene	Mothy tot but of other	i i	ייימורטעומוטו	5555.
C Trible and the control of the cont	ברי ואסמוארמו בסמאו פנופו	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	TTTT.
S. Frichioroemene	MM. 1,2-Eibromo-3-chloropropane	GGG. p-Isopropyltoluene	AAAA. Ethyl tert-butyl ether	UUUU.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	WWV.

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

SDC #: (25c) # 50S LDC #: 135/5@

VALIDATION FINDINGS WORKSHEET Initial Calibration

of Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N N/A

Did the laboratory perform a 5 point calibration prior to sample analysis?

Were percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCC's and SPCC's?

Was a curve fit used for evaluation? If yes, what was the acceptance criteria used for evaluation?

Did the initial calibration meet the acceptance criteria?

Were all %RSDs and RRFs within the validation criteria of ≤30 %RSD and ≥0.05 RRF? Y (N N/A

Custinosti	Guannicanolis	女/マフ																	
Associated Samples		MITBA																	
Finding RRF (Limit: > 0.05)																			
Finding %RSD (Limit: <30.0%)	14-11-11			15.5															
Compound	Œ		Belohexand	MOTIVICYCIOLOXONO												-			
Standard ID	1841			HANCOLOGICAL STATE OF THE STATE				A STREET, A STREET, AS A STREET,	THE RESERVE THE PROPERTY OF TH		A CONTRACTOR OF THE PROPERTY O				The second secon				
# Date	2/1/2	1	The second secon			AND THE PROPERTY OF THE PROPER			Walled American Charles Control of the Control of t			Annual Maria M Annual Maria M	APPENDENT OF THE PROPERTY OF T		на верения вер				

505705 LDC #: 185/180 SDG #: 1

VALIDATION FINDINGS WORKSHEET Blanks

ot .4. Page: Reviewer: 2nd Reviewer:

18260B)
8
ĕ
f
2
846
>
જ
ETHOD: GC/MS VOA (EPA SW 846 Method
Ø
g
S
਼
S
٠.
õ
$\stackrel{\sim}{=}$
Ē

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N = NA = NA

MN N/A

Was a method blank analyzed at least once every 12 hours for each matrix and concentration?

Was there contamination in the method blanks? If yes, please see the qualifications below. Y N N/A

Blank analysis date: 4 Conc. units: /

Associated Samples:

								Not obtained and an artist of the second
Compound	Blank ID			S	Sample Identification	ation		
≽/n/≠	F-10/2029=1017	٨	ĸ					
Methylene chloride								
Acetone	<i>Q)</i>	45/20U	45/U					
$ \mathcal{Q} $	0.80							
					•			ALEXANDER CANADA CONTRACTOR CONTR
								THE PARTY AND ADDRESS OF THE PARTY AND ADDRESS
								And the state of t
CROL								Common Colorador III III III III II II II II II II II I

Blank analysis date: _ Conc. units:

Associated Samples:

Compound	Blank ID	Sample Identification
Methylene chloride		
Acetone		
CROL		

All results were qualified using the criteria stated below except those circled.

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were also qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

LDC #: 13575C1 SDG #: k2502525

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: of/ Reviewer: S

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the

 $RR^{\Gamma}=(A_{\nu})(C_{k})/(A_{k})(C_{\nu})$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 $A_{\rm k}=$ Area of associated internal standard ompound, $C_{\rm k}=$ Concertration of internal standard

 $A_x = Area of compound,$ $C_x = Concentration of compound,$ S = Standard deviation of the RRFs X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Bocelenated
*	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF (\$2 std)	RRF (452) std	Average RRF	Average RRF		
	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	1 1 "	M Attended			(minal)	(miliai)	%HSD	%RSD
		4/11/05	Memylene chloride (1st internal standard)	0.310	0.312	0.327	0.327	XX	124
			Triehlerethene (2nd internal standard)	0.489	687.0	0.45/	0.45/	2	7.8
			Johnson (3rd internal standard)	10.0	100	1.95	1.96	1:0	1
2			Methylene chloride (1st internal standard)					1://	/ /
			Trichlorethene (2nd internal standard)						**************************************
			Toluene (3rd internal standard)					THE RESIDENCE OF THE PROPERTY	THE RESIDENCE AND A STATE OF THE PROPERTY OF T
8			Methylene chloride (1st internal standard)						
			Trichlorethene (2nd internal standard)						ANNONCHANGES OF THE SECOND SEC
	PROPERTY OF THE PROPERTY OF T		Toluene (3rd internal standard)						AND THE PERSONS AND THE PERSON
4			Methylene chloride (1st internal standard)						Annual representation of the state of the st
	-		Trichlorethene (2nd internal standard)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the

Toluene (3rd internal standard)

LDC #:13575c / SDG #: k25702505

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

METHOD: GC/MS VCA (EPA SW 846 Method 8260B)

The percent difference (%D) of the initial calibration average Felative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_{\nu})(C_{\nu})/(A_{\nu})(C_{\nu})$

Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF

 $A_x = Area of compound,$ $A_y = C_x = Concentration of compound, <math>C_b = C_b = C_y = C_y$

 $A_{\mathbf{k}} = Area \ of \ associated internal standard und, <math>C_{\mathbf{k}} = Concentration \ of internal \ standard$

					Reported	Recalculated	Reported	Recalculated
*	Standard ID	Calibration Date	Compound (Reference internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	۵%
-	0411F022	4/11/10	Methylene chloride (1st internal standard)	0.327	0.291	165.0		
		50/11/4	Frishiorethene (2nd internal standard)	0.45/	0.487	(87.0	80	b
			Lough (3rd internal standard)	1.95	2.03	0.03	4	afrika.
2			Methylene chloride (1st internal standard)					
			Trichlorethene (2nd internal standard)					
			Toluene (3rd internal standard)					ANALYSIS ANALYSI ANALYSI ANALYSI ANALYSI ANALYSI ANALYSI ANALYSI ANALYSI ANALYSI ANA
က			Methylene chloride (1st internal standard)					
			Trichlorethene (2nd internal standard)					
			Toluene (3rd internal standard)					
4			Methylene chloride (1st internal standard)					
	жимировной обращарнация че образования обоснования образования образования образования образования образования		Trichlorethene (2nd internal standard)				- ,	
			Toluene (3rd internal standard)					Managabby state shoots do soon of a la diploded delimination segments on proposessions.

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	
Reviewer:	<u> </u>
2nd reviewer:	
	Y

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

% Recovery: SF/SS * 100 Where: SF = Surrogate Found SS = Surrogate Spiked

C-		1	_	ID:
Sa	m	D	е	10:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8	50	53.84	108	108	U
Bromofluorobenzene	Ý	54.78	110	110	,
1,2-Dichloroethane-d4					
Dibromofluoromethane	50	54.01	(08	108	1

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					
Dibromofluoromethane					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					
Dibromofluoromethane				,	

Sample ID:__

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					
Dibromofluoromethane					

Sample ID:_

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					
Dibromofluoromethane					Oraș

SDG #: K2502255 LDC #: 1357301

Laboratory Control Sample Results Verification VALIDATION FINDINGS WORKSHEET

2nd Reviewer: Page:_ Reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Fecovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

No. 1 LCS ID: KW 40505901-1

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

	S S	oike	Spiked Sample	Sample	SOT	s	rcsp	Q	rcs/	rcs/rcsD
Compound	AC)	Addred (S)	Concentration	fration '2)	Percent Recovery	lecovery	Percent Recovery	ecovery	#	RPD
	SOT	CSD	CCS	CSD	Reported	Recalc.	Reported	Bacalo	Donortod	0
1,1-Dichloroethene	25	24	46.7	46.5	93	93	2 V	92	haniodan	necalculated
Trichloroethene	armony		45.9	456	92	92	10	10) -	2
Benzene			45.7	45.4	2	10	-	0		
Toluene			4.9	44	90	000	20	2 8		
Chlorobenzene			42	743	2 0	200	o 0	100		-
))	0	٥	>	>
										AND CONTRACTOR OF THE PROPERTY
PORANGER SERVICE DE LA SET SET CONTRACTOR NA CONTRACTOR SE CONTRACTOR DE LA CONTRACTOR DE L										
									A LONG COLUMN TO THE CASE OF T	описания на применения в приме

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0%

LDC #: /3575C/ SDG #: /2502505

%S

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Example:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Y N N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

 $(A_x)(I_s)(DF)$ Concentration = $\overline{(A_{is})(RRF)(V_o)(\%S)}$ Area of the characteristic ion (EICP) for the compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Amount of internal standard added in nanograms = Relative response factor of the calibration standard. RRF Volume or weight of sample pruged in milliliters (ml) V_{\circ} or grams (g). Dilution factor. Df

Percent solids, applicable to soils and solid matrices

Conc. = (179070) (50) (5) (6338785+ 0.0779(3.43)(0.5-9)
=44.8 M8/15

#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration ()	Qualification
-	Odmpo 12				
 					
<u> </u>					
			Marie American Street Contracts		
				:	